BIOMONITORING REPORT

FOR

CITY OF CALDWELL WWTP

LAB #1714385

PERMIT # ID0021504

APRIL 2017

PREPARED BY:

ANALYTICAL LABORATORIES, INC. 1802 N. 33RD STREET BOISE, ID 83703 (208)342-5515

SUMMARY OF ANALYSES

CITY OF CALDWELL WWTP APRIL 2017

The results for the Fathead Minnow survival study:

NOEC: 100% LOEC: >100% IC25: >100% TU_C: 1

The results for the Fathead Minnow growth study:

NOEC: 100% LOEC: >100% IC25: >100% TUc: 1

The results for the Ceriodaphnia dubia reproduction study:

NOEC: 100% LOEC: >100% IC25: >100% TU_C: 1

The results for the Ceriodaphnia dubia survival study:

NOEC: 100% LOEC: >100% IC25: >100% TU_C: 1

The results for the algae, Selenastrum capricornutum growth study:

NOEC: 100% LOEC: >100% IC25: >100% TUe: 1

Interpretation

EPA Method 1000.0- Pimephales promelas

Statistical analyses of survival and growth data for test method 1000.0 demonstrated that all concentrations tested were not significantly different from the controls and displayed no chronic toxicity.

EPA Method 1002.0- Ceriodaphnia dubia

Statistical analyses of survival and reproduction data for test method 1002.0 demonstrated that all concentrations tested were not significantly different from the controls and displayed no chronic toxicity.

EPA Method 1003.0 - Selenastrum capricornutum

Statistical analyses of growth inhibition data for test method 1003.0 demonstrated that all concentrations tested displayed no chronic toxicity. However, significantly greater growth in increased test concentrations may indicate a bio stimulatory effect caused by the effluent sample.

Introduction

Toxicity analyses, consisting of two chronic bioassays, EPA Test Method 1000.0, EPA Test Method 1002.0 and EPA Test Method 1003.0 were conducted on effluent samples collected by the City of Caldwell WWTP. Samples were collected April 11, April 13, and April 14, 2017, as 24-hour effluent composites. Once collected, samples were sent immediately to Analytical Laboratories, Inc. for analyses. Effluent composites were collected in one-gallon jugs for solution renewal water and in one liter cubitainers for water chemistries testing. Samples were chilled during transport by the addition of cold packs to the coolers. Method 1000.0, using the freshwater fathead minnow Pimephales promelas, was conducted on April 11, 2017 and completed on April 18, 2017. Method 1002.0, utilizing the freshwater flea Ceriodaphnia dubia, was conducted on April 11, 2017 and completed on April 18, 2017. Method 1003.0 utilizing the green algae Selenastrum capricornutum was initiated April 13, 2017 and completed on April 17, 2017. Testing was conducted according to Short-Term Methods for Estimating the Chronic Toxicity of Effluents and receiving Waters to Freshwater Organisms, Fourth Edition October 2002 EPA-821-R-02-013 and Standard Methods for the Examination of Water and Wastewater, 19th Edition.

Methods and Materials

Test methods are designed to estimate and measure chronic toxicity of effluents to the cladoceran *Ceriodaphnia dubia* and the fathead minnow *Pimephales promelas* in a 7-day static renewal test. The green algae *Selenastrum capricornutum* was exposed in a static system to a series of concentrations of effluent for 96 hours to estimate chronic toxicity. Effluent was used, whole or combined, with artificially prepared dilution water to prepare dilution series. Dilution water was prepared (20% v/v Perrier mineral water in Millipore Milli-Q deionized water) to produce a moderately hard dilution and control water. Water was prepared in bulk 24 hours prior to analyses and was aerated for 24 hours prior to starting the test in order to produce sufficient dissolved oxygen in the control water. All test method design and overviews are provided below.

For Method 1000.0, utilizing the fathead minnow *Pimephales promelas*, larvae (less than 24 hours) were sent from Aquatic Biosystems, Inc. in Fort Collins, Colorado. Organisms were sent by UPS in oxygen saturated water contained in plastic bags in an insulated container. Once received, larvae were steadily acclimated to laboratory control water prior to transfer to test dilutions. Healthy larvae were transferred to test cells using wide-bore pipettes. Larvae were offered freshly hatched, freshwater-rinsed brine shrimp *Artemia nauplii*. Larvae were fed twice daily and water renewed daily using fresh test solution for seven consecutive days. Data obtained was used to determine NOEC, LOEC, IC25 and TUc for survival and growth (dry weight gain).

For Test Method 1002.0, *Ceriodaphnia dubia* neonates were produced in house from brood organisms that produce 8 or more young in their 3rd or subsequent broods. Brood animals are fed daily and transferred to new culture media at a minimum of 3 times a week. Survival and reproduction records are maintained to ensure healthy test organisms. Original mass cultures of organisms were started from brood organisms obtained from Aquatic Biosystems in Fort Collins, Colorado. Neonates less than 24 hours old were selected randomly from a composite pool, inspected, and arranged in five sample dilutions and a control with ten replicates. Analyses at a static renewal were performed over the next seven consecutive days. Data obtained was used to determine NOEC, LOEC, and IC25 for survival and reproduction (see Appendix I - Definition of Terms).

For Test Method 1003.0, utilizing the green algae *Selenastrum capricornutum*, starter cultures are purchased from Aquatic Biosystems with an initial concentration of 3.0 x 10⁷ cells/mL. This stock solution is diluted with algal medium to produce at initial concentration of >10,000 algae cells/mL in each replicate. A spectrophotometer is used at the beginning and after completion of the test to determine the cell density in each replicate prior to the start, and at the end of the test period. For the duration of the test, vessels are shaken twice daily to avoid sedimentation of algal cells for prolonged periods of time. Data obtained was used to determine NOEC, LOEC, IC25 and TUc (see Appendix I - Definition of Terms) for specific growth rate (increase in cell density).

Test Designed/Standard Conditions/Method 1000.0:

Test design and standard conditions for Method 1000.0 are as follows:

1. Test Type - static renewal (daily)

Collection #1 - Renewal Day 1 and 2 - April 11, 2017

Collection #2 - Renewal Day 3 and 4 - April 13, 2017

Collection #3 - Renewal Day 5 and 6 - April 14, 2017

Day 7 – Final counts and statistical review

2. Temperature - 25 +/ - 1 degrees Celsius.

3. Light Quality - Environmental Chamber Fisher/11-67966

4. Light Intensity - Incubation chamber (as above)

5. Photoperiod - 16 hours light; 8 hours dark

6. Test Chamber - 500 mL tall form beakers

7. Test Solution Volume - 250 ml / replicate

8. Renewal static - All dilutions daily

9. Age of Test Organisms - Larvae; less than 24 hours old

10. Individual/Chamber - 10 per chamber

11. Chamber Replicates - 4 replicates of each dilution and control

12. Feeding - 0.1 ml newly hatched brine shrimp twice daily; 8 hour

intervals

13. Dilution Water - 20% v/v Perrier Mineral Water in deionized water

14. Dilution Concentrations - 100%, 81%, 62%, 31%, 15.5% and Control

15. Test Duration - 7 days

16. Endpoints - Survival and growth (individual dry weight gain)

17. Acceptability - 80% survival in controls. Average net dry weight gain of

surviving controls equals or exceeds 0.25 mg/individual

18. Sample Volume Taken - 1 gallon for test solution renewal and 1 liter for daily

composite water chemistries

19. Source of organisms - Aquatic Biosystems, Inc., Fort Collins, Colorado

Test Design/Standard Conditions Method 1002.0

1. Test Type - static renewal (daily)

Collection #1 - Renewal Day 1 and 2 - April 11, 2017

Collection #2 - Renewal Day 3 and 4 - April 13, 2017

Collection #3 - Renewal Day 5 and 6 - April 14, 2017

Day 7 – Final counts and statistical review

2. Temperature - 25 +/- 1 degree Celsius.

3. Light Quality - Environmental Chamber Fisher/11-67966

4. Light Intensity - Incubation chamber (as above)

5. Photoperiod - 16 hours light; 8 hours dark

6. Test Chamber - 30 ml anchor-hocking

7. Renewal - All dilutions daily

8. Age - Neonates/less than 24 hours

9. Organisms per chamber - One

10. Replicates - Ten chambers/control and each dilution

11. Feeding - 0.1 ml YTC; 0.1 ml Selenastrum capricornutum

suspension - once daily

12. Dilution water - 20% v/v Perrier Mineral Water in deionized water

13. Concentrations used - 100%, 81%, 62%, 31%, 15.5% and Control

14. Duration - Seven days

15. Endpoint - Survival/reproduction

16. Acceptability - 80% or greater of control survival / 60% of control produce

3rd brood / Average of 15 young/surviving female

17. Source of organisms - In house

Test Designed/Standard Conditions/Method 1003.0

1. Test Type: Static system

Collection - April 13, 2017

2. Temperature: 25 degrees C. +/- 1 degree C.

3. Light Quality: Incubator chamber (Percival Scientific Model

AL30L2C8)

4. Light Intensity: Incubation chamber (as above)

5. Photoperiod: 24 hours light

6. Test Chamber: 250 mL borosilicate glass bottles

7. Test Solution Volume: 100 ml / replicate

8. Age of Test Organisms: 4 day culture

9. Individual/Vessel: 7.34 x 10⁵ cells per mL initially

10. Vessel Replicates: 4 replicates of control and each dilution

11. Feeding: Initial addition of Algal culture medium (prepared

by Aquatic Biosystems) at equal portion in each

dilution.

12. Dilution Water: 20% diluted Perrier mineral water

13. Dilution Concentrations: 100%, 81%, 62%, 31%, 15.5% and Control

14. Test Duration: 96 hours

15. Endpoint: Growth – Absorbance values obtained from

Spectronic 601 are used to determine cells/mL

based on a standardized linear relationship

16. Acceptability: Mean cell density of at least 1.0 x 10⁶ cells/mL in

the controls; and variability (CV%) among control

replicates less than or equal to 20%

Source of Algae: Aquatic Biosystems, Fort Collins, Colorado

Interpretation - Statistical Review

Results - Method 1000.0

During Method 1000.0, larval survival and growth test using the fathead minnow *Pimephales promelas*, survival and growth from specific dilutions of collected wastewater were measured and compared to values obtained from controls prepared in 20% diluted mineral water.

Statistical analyses of survival and growth data for test method 1000.0 demonstrated that all concentrations tested were not significantly different from the controls and displayed no chronic toxicity.

Endpoints Determined - Method 1000.0

		<u>NOEC</u>	<u>LOEC</u>	<u>IC25</u>
Pimephales promelas	Survival	100%	>100%	>100%
	Growth	100%	>100%	>100%

Survival of controls exceeded eighty-percent (80%) and net dry weight gain of surviving individuals did exceed 0.25 mg/individuals in controls. Test was declared valid.

Results - Method 1002.0

During EPA Method 1002.0, survival and reproduction test using Ceriodaphnia dubia, survival and reproduction values from specific dilutions of collected effluent are measured and compared to values obtained from control individuals.

Statistical analyses of survival and reproduction data for test method 1002.0 demonstrated that all concentrations tested were not significantly different from the controls and displayed no chronic toxicity.

Endpoints Determined - Method 1002.0

		<u>NOEC</u>	<u>LOEC</u>	<u>IC25</u>
Ceriodaphnia dubia	Survival	100%	>100%	>100%
	Reproduction	100%	>100%	>100%

The mortality was less than twenty percent (<20%) in controls. An average of at least 15 young per surviving female within three broods was established. Reproduction test was declared valid.

Results - Method 1003.0

During EPA Method 1003.0, algal growth response test using the green algae *Selenastrum capricornutum*, growth from specific dilutions of collected effluent were measured and compared to values obtained from controls prepared in 20% diluted Perrier mineral water.

Statistical analyses of growth inhibition data for test method 1003.0 demonstrated that all concentrations tested were not significantly different from the controls and displayed no chronic toxicity.

Endpoints Determined - Method 1003.0

		<u>NOEC</u>	<u>LOEC</u>	<u>IC25</u>
Selenastrum capricornutum	Growth	100%	>100%	>100%

Final mean cell counts of control exceeded 1.0 x 10⁶ cell/mL cell density and less than 20% variation in controls was established. Test was declared valid.

Test Quality Control

Quality control practices for effluent toxicity tests include certain precautions at each of the following steps:

- Effluent sampling and handling. Sampling containers prepared as per section 7 of
 Methods for Measuring and Chronic Toxicity of Effluent to Freshwater and Marine
 Organisms were provided to client. Insulated transportation containers with cooling
 packs to chill samples were provided.
- 2. <u>Condition of test organisms</u>. Test organisms for Method 1000.0 and 1002.0, 1003.0 are purchased from Aquatic Biosystems, Inc. in Fort Collins, Colorado, a state and federally approved aquatic test organism supplier.
- 3. <u>Conditions of test equipment</u>. All test equipment used is maintained according to manufacturer's specifications. Equipment such as balances, thermometers, .etc is calibrated annually by outside sources and certificates are maintained. All equipment maintenance and calibrations are recorded and archived.
- 4. <u>Test conditions</u>. Only test methods directly from EPA references or methodologies provided are used. Any deviations or alterations from these procedures are documented and approved prior to use.
- 5. Reference toxicants. Reference toxicants are used for both Methods 1000.0 and 1002.0. Sodium chloride is made up in dilution control water at prescribed concentrations and is used to determine toxicity for each method. Reference toxicants are run once per month to ensure consistency in test methodology. Quality control data is provided and a graphical representation over time is attached.
- 6. Record Keeping. All raw data, data evaluation, and statistical analysis are included in report to client. Original hardcopies along with all test records are maintained at laboratory for client or future reference.

LIST OF TABLES AND APPENDICES

Table I -Pimephales promelas Survival Data - Method 1000.0

Table II -Pimephales promelas Growth Data - Method 1000.0

Table III -Water Chemistries – Daily Renewal Summary – Method 1000.0

Table IV -Ceriodaphnia dubia Survival and Reproduction Summary -

Method 1002.0

Table V -Water Chemistries - Daily Renewal Summary - Method 1002.0

Table VI -Selenastrum capricornutum water pH and temperature- Method

1003.0

Table VII -Selenastrum capricornutum cell count density summary- Method

1003.0

Table VIII - Dilution chemistries summary

Table VIIII - Sample chemistries summary

Appendix I -Definition of Terms

Appendix II - Ceriodaphnia dubia Raw Data & Analysis

Appendix III -Pimephales promelas Raw Data & Analysis

Appendix IV -Selenastrum capricornutum Raw Data & Analysis

Appendix V -Effluent Samples Chain of Custodies & Chemistries Reports

Appendix VI -NPDES WETT Permit Requirements

Appendix VI -Organisms - Transfer Sheets

Appendix VII -Literature Cited

Appendix VIII -Reference Toxicants Data and Graphs

CITY OF CALDWELL WWTP LAB ID # 1714385 APRIL 2017

METHOD 1000.0

Concentration	Initial Count	nt 48-hour 96-hour Count Count		Final Count	Percent Survival
Control	40	39	37	37	93%
15.5%	40	38	37	37	95%
31%	40	39	39	39	98%
62%	40	40	40	40	100%
81%	40	40	40	40	100%
100%	40	40	40	39	98%

Table I: Fathead Minnow Larvae Survival Summary

	APPROXIMATE	ENDING	ENDING AVERAGE		
Concentration	AVERAGE INITIAL	AVERAGE	WEIGHT GAIN		
	WEIGHT (mg)*	WEIGHT (mg)	(mg)		
Control	0.12	0.46	0.34		
15.5%	0.12	0.44	0.32		
31%	0.12	0.49	0.37		
62%	0.12	0.48	0.36		
81%	0.12	0.49	0.37		
100%	0.12	0.46	0.34		

^{*} Initial weight obtained by taking 40 individuals at beginning of procedure (weight is dry weight/mg, 100° C. for 24 hours.)

Table II: Fathead Minnow Larvae Growth Summary

Concentration	Day	1	2	3	4	5	6	7
Control	DO	6.7	6.7	6.4	6.3	6.2	6.6	6.7
	pН	7.7	7.7	7.7	7.7	7.7	7.8	7.6
15.5%	DO	5.7	7.0	5.3	6.3	6.3	6.4	6.5
13.5/0	pН	7.7	7.9	7.6	7.7	7.8	7.8	7.7
31%	DO	5.8	6.7	5.1	6.2	6.3	6.2	5.9
3170	pН	7.7	7.9	7.6	7.8	7.8	7.9	7.8
62%	DO	5.6	6.7	5.3	6.2	6.6	6.4	6.1
02/0	pН	7.9	8.0	7.8	7.9	8.0	8.1	8.1
81%	DO	6.3	6.7	5.2	6.1	6.4	6.5	6.2
0170	pН	8.1	8.1	7.9	8.0	8.1	8.1	8.2
1000/	DO	6.7	6.8	5.0	6.3	6.5	6.6	6.2
100%	pН	8.2	8.2	7.9	8.1	8.1	8.2	8.1

Table III: Water Chemistries, Daily Renewals – Old Water pH & Dissolved Oxygen Values

CITY OF CALDWELL WWTP LAB ID #1714385 APRIL 2017

METHOD 1002.0

Concentration	Initial Count	48-hour Count	96-hour Count	Final Count	Percent Survival	Average Remaining Young/Female
Control	10	10	10	9	90%	32.8
15.5%	10	10	10	10	100%	41.9
31%	10	10	10	10	100%	38.6
62%	10	10	10	10	100%	37.3
81%	10	10	10	10	100%	36.9
100%	10	10	10	10	100%	36.0

Table IV: Ceriodaphnia dubia Survival and Reproduction Summary

Concentration	Cor	ıtrol	15.	5%	31	%	62	%	81	%	100)%
Day	DO	pН	DO	pН	DO	pН	DO	pН	DO	pН	DO	pН
1	7.8	8.2	7.8	8.2	7.8	8.1	7.8	8.2	7.8	8.3	7.9	8.4
2	8.3	7.9	8.3	8.1	8.2	8.2	8.2	8.3	8.4	8.4	8.4	8.4
3	7.7	8.0	7.9	8.2	7.8	8.2	7.8	8.3	7.8	8.3	7.8	8.4
4	7.5	8.2	7.8	8.2	7.9	8.3	7.6	8.3	7.9	8.4	7.5	8.5
5	7.8	8.4	7.7	8.3	7.7		7.7		7.8	8.4	7.9	8.4
6	8.0	8.4	7.8	8.3	7.9	8.3	7.8	8.4	7.9	8.5	8.1	8.5
7	8.1	8.3	8.2	8.3	8.2	8.2	8.3	8.2	8.5	8.3	8.5	8.4

Table V: Water Chemistries, Daily Renewals – Old Water pH & Dissolved Oxygen Values

CITY OF CALDWELL WWTP LAB ID #1714385 APRIL 2017

METHOD 1003.0

Conc	Da	Day 0		Day 1		Day 2		y 3	Day 4	
Conc	pН	Temp	pН	Temp	pН	Temp	pН	Temp	pН	Temp
Control	8.1	25.0	9.5	24.0	10.4	24.5	10.5	23.7	10.6	24.5
15.5%	8.1	25.2	9.6	24.4	10.4	24.4	10.7	23.9	10.7	24.4
31%	8.0	25.4	9.5	23.9	10.5	24.1	10.7	23.9	10.7	23.9
62%	7.9	25.4	9.4	24.5	10.4	24.2	10.7	24.5	10.7	24.3
81%	7.8	25.2	9.2	24.4	10.4	24.0	10.7	24.5	10.8	24.5
100%	7.8	25.1	9.2	24.2	10.4	24.5	10.7	23.2	10.8	24.4

Table VI: Selenastrum capricornutum Water pH & Temperature

Concentration	Initial Cell Density	Final Cell Density Replicate 1	Final Cell Density Replicate 2	Final Cell Density Replicate 3	Final Cell Density Replicate 4	Final Cell Density Average
Control	0.419	1.84	1.54	2.02	1.99	1.85
15.5%	0.419	2.71	2.89	2.74	2.80	2.79
31%	0.419	3.28	3.34	3.34	3.31	3.32
62%	0.419	4.24	4.39	4.33	4.54	4.38
81%	0.419	5.92	5.68	5.95	5.23	5.70
100%	0.419	7.39	7.39	6.58	7.69	7.27

*Millions of cells per mL

Table VII: Selenastrum capricornutum Growth Response Summary

CITY OF CALDWELL WWTP LAB ID # 1714385 APRIL 2017

Sample Date	CHLORINE RESIDUAL	ALKALINITY	CONDUCTIVITY	HARDNESS	AMMONIA	рН
	(mg/L)	(mg/L)	(umhos)	(mg/L)	(mg/L)	S.U.
4/11/2017	< 0.10	207	755	183	0.07	7.3
4/13/2017	< 0.10	201	790	185	0.58	7.6
4/14/2017	< 0.10	197	800	191	0.70	7.5

Table VIII: Effluent Chemistries Summary for EPA Method 1000.0, 1002.0 and 1003.0

Definition of Terms

- 1. <u>Safe Concentration</u>. The highest concentrations of toxicant that will permit normal propagation of fish and other aquatic life in receiving waters, biologically defined rather than statistically.
- 2. <u>NOEC</u> (No-Observed Effect Concentration) The highest concentration of toxicant in which the values for the observed parameters (survival, growth, reproduction) in which there is no statistically significant difference from controls and no observable effect on organism behavior or health.
- 3. <u>LOEC</u> (Lowest-Observed Effect Concentration) The lowest concentration of toxicant in which the values for the observed parameters (survival, growth, reproduction) do have a statistical significant difference from controls. At this concentration there is evidence of toxicity.
- 4. <u>TUc</u> (chronic toxicity units) 100/NOEC for Survival; 100/IC25 for all other endpoints
- 5. <u>IC25</u> (Inhibition concentration 25%) Concentration where at least 25% of the organisms have some statistically significant effect.
 - Taken from: <u>Short-Term methods for Estimating the Chronic Toxicity of Effluents</u> and receiving Waters to Freshwater Organisms, Fourth Edition. October 2002. EPA-821-R-02-013.

LAB ID#:			eet For Fath	nead Minno	ow Surviv	al Test EP Analyst: Test Sta	'A METHU L <i>io lei</i>	D 1000.0 Final Rend	rt Review	3C
_	Effluen	<u>385 </u>				Test Sta	rt Date.	4-11-17	., (, (0+1044	
			WWTP	•		Test Sto		4-18-1	7	
Renewal Lab I		Day 0.1	14385	Day 2,3: /	4840	Day 4,5,6:				
Lab Id/Day:		July 0,1.	17202	July 2,0. 1	- 'E		- 5 - 7	· · · · · · · · · · · · · · · · · · ·		
Day		0	1	2	3	4	5	6	7	Remarks
Conc:	Beaker#	<u> </u>								
Control	1	0	10	0/	10	10	10	to	10	
	2	10	(0	10	10	10	(0	10	10	1431
ľ	3	٥	10	٩	9	8	8	8	<u> </u>	/ ' ' '
	4	10	10	\0	9		_5		9	
New DO		7.7	7.9	8.0	7.7	7.6	J. &	J.S.	XXX	
New pH		7.5	<u> </u>	7.0	7.6	7.6	7.9	8.0	XXX	
Temp		72.9	32.9	35.2	23.8	23.2	33.0	34.2	7 XXX	
Old DO		XXX	6.7	97	6.4	43	9.3	3, 3°	4-7-	
Old pH		XXX	 	1.	1.1	10	10	10	10	.
Conc:	1 2	18	10	8	10	9	- 4 - 1	4	4	1071
15.5%	3	10	10	1 2	4	9	9	9	4	1 7)/
12,7%	4		10	10	10	9	9	9	9	
New DO	-7	1.0	<u> </u>	8.0	8.0	7.9	7.4	7.8	XXX	
New pH		7.7	79	4.5	7.6	7.6	8.0	7.8	XXX	
Temp		22.8	23.2	23.3	22.8	23.5	23.5	24.7	XXX	
Old DO		XXX		27.0	5.3	6.3	43	64	42	
Old pH		XXX	77	7.9	7-6	7.7	7.8	7.8		
Conc:	1	10	(0	10	10	10	<u> 10</u>	- 10	<u> 10</u>	1000
ا میر	2	0	10	٩	9	9	٩ ١٥			98%
31%	3	10	10	10	10	10	10	(8	10	10"
	4	10	0 0	90	10	8.1	8.1	8.3	XXX	
New DO		8.3	8.3	8.3	8.1 7.6	7.5	~ ~ ~	7,	XXX	
New pH		7.6	136	33.3	23.0	23.4	23.6	24.3	xxx	
Temp Old DO		XXX	3.8	737	5.1	6.2	6.3	6.3	59	
Hq blO		XXX	 71.21	7:4	7.6	7.8	7.8	79	7.8	
Conc:	1		10	10	10	10	(0	10	10	\
	2		10	10	10	10	(0	10	10	1004
62%	3		10	10	10	10	10	10	10	100%
Ua. 14	4	0	10	(0	10	10	10	26	<u> 10</u>	/
New DO		8.7	8.8	8.6	8.5	8.5	8.5	8.8	XXX	<u> </u>
New pH		7.6	7.5	7.4_	7.5	7.4	13	7.5	XXX	
Temp		22.9	333	35.7	23.3	24.0	256	24.2	6.3	
Old DO		XXX	5.4	ر بها	5.3 7.8	6.2 7.9	8.0	8.1	8.1	
Old pH		XXX	+ 18.7	8.0		10	10	10	10	1
Conc:	1 2		10	(0	10	10	10	10	10	Long
81%	$\frac{2}{3}$		10	10	10	10	10	10	6)	100%
01%	4		16	10	10	10	10	10	10	
New DO		9.1	95	8.9	8.7	8.9	8.8	9.3 7.5	XXX	
New pH		7.5	17.5	7.4	7.4	7.4	1.9		xxx	
Temp		1227	23.5	7225	23.8	23.7	23.5	24.1	XXX	
Old DO		XXX	6.3	6.7	5.2	6.1	6.4	6.5	63	
Old pH		XXX	1.8	8.1	7.9	8.0	4.1	8.1	8.7	<u> </u>
Conc:	1		10	1/8	10	10	10	18	10	\ na
,	2		10		10	10	10	10	10	198%
100%	3		10	10	10	10	10	10	10	 /
	4		10	0 2	10	10	9.0	9.6	XXX	
New DO		9.4	9.6	93	8.8	9.0	7.4	7.3	XXX	1
New pH		7.5	12.5	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	23.8	23.7	23.7	24.0	XXX	
Temp	<u> </u>	22.1	73.6	225	5.0	6.3	1361	6.6	6.2	1
Old DO		XXX	8,2	8.2	7 9	8.1	8.1	13	1.8	
Old pH	A.M.	XXX		ue	ζρ SL	LP	WR	W.	XXX	
Feeding	P.M.	 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	WR	TSL	GP	we	Wh	xxx	
	1	<u> </u>	1 2				<u> </u>			

Facility Test ID

Analytical Laboratories

1714385 City of Caldwell WWTP

5/3/2017

Analyst **Species** Chris Pate

Pimephales promelas (fathead minnow)

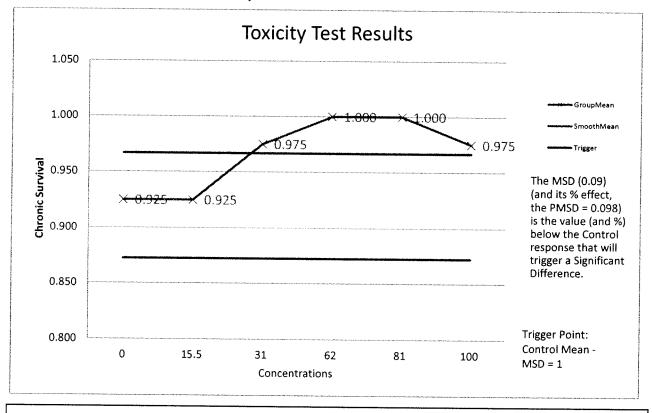
Test Type Chronic Survival

IWC Conc.

Input

Date

mput							
Number of Organis	sms Expose	d or Counted					
			Concer	trations			
Replicate	<u>0</u>	<u>15.5</u>	<u>31</u>	<u>62</u>	<u>81</u>	<u>100</u>	
1	10	10	10	10	10	10	
2	10	10	10	10	10	10	
3	10	10	10	10	10	10	
4	10	10	10	10	10	10	


Number of Organisms Surviving or Responding

			Concer	itrations		
Replicate	<u>0</u>	<u>15.5</u>	<u>31</u>	<u>62</u>	<u>81</u>	<u>100</u>
1	10	10	10	10	10	10
2	10	9	9	10	10	10
3	8	9	10	10	10	10
4	9	9	10	10	10	9

Total Organisms	40	40	40	40	40	40
Total Responding	37	37	39	40	40	39
% Responding	92.5%	92.5%	97.5%	100.0%	100.0%	97.5%
Output						

TST	Calculated t	t-value	Table t-va	lue	Relative % Effect at IWC		
100	>100		>100	N/A	N/A		
NOEC	LOEC		IC25	95% Cont	fidence Intervals		
	100	1.371	0.081	0.059	NS		
calculations	81	1.412	0.000	0.000	NS		
used for endpoint calculations	62	1.412	0.000	0.000	NS		
the transformed data	31	1.371	0.081	0.059	NS		
Statistics are based or	15.5	1.290	0.081	0.063	NS		
	0	1.295	0.147	0.113			
Statistical Data	Conc.	Mean	Stdev	CV	Dunnett test		

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

BENCH SHEET FOR FATHEAD MINNOW INITIAL WEIGHT DATA EPA METHOD 1000.0

LAB ID#: 1714385 Test Start Date: 4-11-17

Drying Temp: 100°C

Weighing Date: 4-12-17 Test End Date: 4-18-17

Drying Time: 34 kms

Location/Client: Caldwell WWTP

	Rep No.	Weight of Boat (g)	Boat and Dry Larvae (g)	Dry Weight of Larvae (g)		Mean Dry Weight of Larvae (mg)	Average
	TI	1.2865	1.2876	1100.0	10	11.0	
	23	1,2915	(.2925	0.0010		0.00	
Initial	23	1.2895	1.2909	6.0014		0.14	0.13mg
	14	1.2905	T196.1	6.002	V	6119	

Fathead Minnow Weight Data EPA METHOD 1000.0 LAB ID#: 1714385 Test Start Date: 4-11-17 Drying Temp: 100°C Test End Date: 4-18-17 Drying Time: 94 kms

Location/Client: Caldwell WWTP

			Mainh of				
Conc.	ID No.	Weight of Boat (g)	Weight of Boat and Dry Larvae (g)	Dry Weight of Larvae (g)	Original No. of Larvae	Mean Dry Weight of Larvae (mg)	Avg - Initial = Net Weight Gain
	1 1	1.2803	1.2847	0.00 પ ુપ	(0	0.44	
CONTROL	9	1.2774	1,2814	0.00 ५o		6.40	0.46mg -0.12mg=0.34mg
CONTROL	3,	12751	1,2795	0.00 ५५		6.44	0. 1823
	4	1,2698	1.2155	0.0057		0.57	
	xS	1,2949	1.2990	0.0041		0.41	
ire		1,2644	1.7688	0.0044		0.44	0.44mg -0.12mg = 0.32mg
15.5%	×71	1,2974	1.3016	0.00 42		64.0	, ,
	x 8	1,2886	1.2936	0.00 50		0.50	
	×9	1.2911	1.2961	0.00 50		0.50	
31%		1,2960	1.2999	0.0039		७७३९	0.49 mg - 0.12mg = 0.37mg
دا ال	× (1	1,2975	1,3033	0.0058		058	
	X12	1,2867	1,2915	0.0048		0.48	
	x 13	1,2951	1.3002	0.0051		0.51	
100	× 14	1,2973	1.3023	0.0045		0.45	198m = 012m = 036mg
62%	x 15		1.2960	0.0046		0.46	0.48mg-0.12mg=0.36mg
	x 16	1.2866	1.2914	0.00 ५४		0.48	
	×17	1,2926	1.2980	0.0054		0.54	
81%	x 18	1,2985	1,3034	0.0049		0.49	1 mile . = 0.12mi = 0.37ma
01%	x 19	1,2939	1,2986	0.00 48		0.48	0.49mg - 0.12mg = 0.37mg
	K 20	1,2891	1,2934	0.00 43		0.43	
	x 21	1.2913	1.2969	0.0056		0.56	-
100%	- 00	1,2947	1.2990	0.0043		0.43	0.46my - 0.12mg = 0.34mg
1,00%	x 23	1.2989	1.3031	0.00 42		0.42	, ,
	x 24	1,2978		0.00 44	₩	0.44	

Reviewed By: 50

Facility Test ID

IWC Conc.

Analytical Laboratories

1714385 City of Caldwell WWTP

5/3/2017

Species

Analyst

Chris Pate

Pimephales promelas (fathead minnow)

Test Type Growth

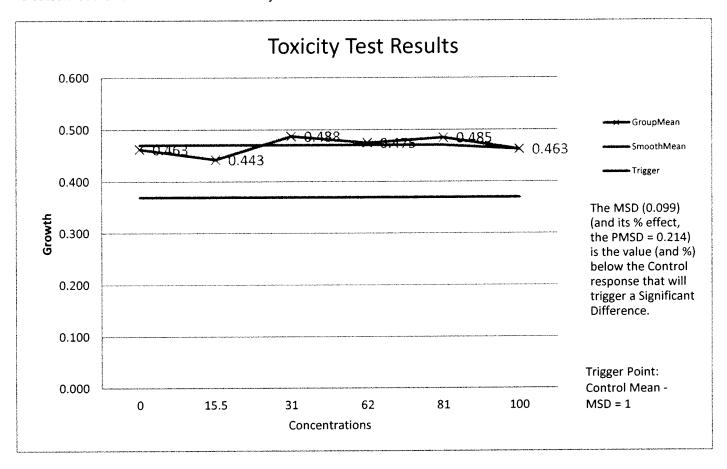
Input

Date

<u> </u>			Concer	trations			
.	_						
Replicate	<u>0</u>	<u>15.5</u>	<u>31</u>	<u>62</u>	<u>81</u>	<u>100</u>	
1	0.44	0.41	0.5	0.51	0.54	0.56	
2	0.4	0.44	0.39	0.45	0.49	0.43	
3	0.44	0.42	0.58	0.46	0.48	0.42	
4	0.57	0.5	0.48	0.48	0.43	0.44	

Mean	0.463	0.443	0.488	0.475	0.485	0.463	
Stdev	0.074	0.040	0.078	0.026	0.045	0.066	
Output							
Statistical Data	Conc.	Mean	Stdev	CV		Dunnett test	
	0	0.463	0.074	0.160			
	15.5	0.443	0.040	0.091		NS	
	31	0.488	0.078	0.160		NS	
	62	0.475	0.026	0.056		NS	
	81	0.485	0.045	0.093		NS	
	100	0.463	0.066	0.142		NS	
NOEC	LOEC		IC25	95% Conf	idence Interva	ls	
100	>100		>100	N/A	N/A		

MSD	PMSD
0.099	21.4%


Table t-value

TST

Calculated t-value

Relative % Effect at IWC

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

PAGE __/_OF__2 BENCH SHEET FOR CERIODAPHNIA SURVIVAL/REPRODUCTION TEST. EPA Method 1002.0 LAB ID# 1714385 Analyst: 4/WR/sc Final Report Review: 30 Discharged: Effluent Test Start Date/Time: 4-11-17, 1600 Description: Caldwell WWTP Test Stop Date/Time: 4-18-17, 1600 Temp Received: Day 1: 5.0°c _ Day 2: 6.6°c Day 3: 5.1°c Renewal Lab Numbers: Day 0 & 1: 14385 Day 2 & 3: 14848 Day 4, 5 & 6: 15009 Conc Control Day-Lab # 2 New New 3 Old 4 6 7 Old Daily 8 9 10 Young D.O. pН D.O. Temp 0-7.7 7.5 1-79 2-8.0 7.8 8.3 3-7.7 7.6 8.0 4-1/8 6055 7.6 7.6 5-2/14 2/17 92 8.4 6-2/10 40 75 8.0 7-3/18 3/21 \$/*3*0 3/20 141 * Total 23 27 42 26 39 4/16/17 Replicate 9 Died due 45 328 M/F prisboutzing of Conc 15.5% Day-Lab # 2 New 3 New Old 4 5 6 7 Old 8 Daily 9 10 Young D.O. pН D.O. рН Temp 0-8.1 7.7 24.0 1-2-8.0 8.1 23.0 3-8.0 7.6 24.0 4-48 118 73 5-2/12 83 8.0 6-2113 7.8 2/15 54 8.3 7-3/21 3/20 3/22 3/22/3/23 3/21 209 Total 41 42 46 44 419 43 M/F

Conc	31%															
Day-Lab #	1	2	3	4	5	6	7	8	9	10	# Young	New D.O.	New pH	Old D.O.	Old pH	Daily Temp
0-	<u> </u>	<u></u>	\ \ <u>\</u>		\/	/	V	V				8.3	7.6		P	23.9
1-	4			\								8.3		7.5	8.1	233
2- 3-		/	V	/	/	Y	1	V	<u>/</u>	/		8.2	7.5	6.3	8.2	0.86
4-	V 1/7	115	101	1/8	111	1/5	1/1	1/50	112	1/0		8.1	7.6	7.8	8.2	23.4
5-	71	117	1/4	118	76	711	76 243	215	77	7/8	66	8.1	7.5	7,9	8.3	34.8
6-	2/6	2/14	2/16	2/11	7/19	-113	./		2/14	9/1)	66 70	1.8 6.8	1.1	7.9	8.3	23.6
7-	3/15	3/18	3/19		3/21	3/21	3/19	3/18	3/19	3119	184	0-0	1,6	8.2	4.3	23.5
Total	37	37	39	34	41	41	38	41	40	38	386			10·d	0.0	
8.4/E																

PAGE 2 OF 2

BENCH SHEET FOR CERIODAPHNIA SURVIVAL/REPRODUCTION TEST. EPA Method 1002.0

LAB ID# 1714385

Analyst: cp/wr/sc Final Report Review: 3c

Test Start Date/Time: 4-11-17, 1600 Discharged: Effluent Test Stop Date/Time: 4-18-17, 1600 Description: Coldwell WWTP

Temp Received: Day 1: 5.0° Day 2: 6.6° Day 3: 5.1° Renewal Lab Numbers: Day 0 & 1: 14385 Day 2 & 3: 14848 Day 4, 5 & 6: 15009

Conc	62	<u>%</u>

Day-Lab #	1	2	3	4	5	6	7	8	9	10	# Young	New D.O.	New pH	Old D.O.	Old pH	Daily Temp
0-			1			1	/	/				8.7	7.6			23.3
1-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								\ <u>/</u>	\		8.8	7.5	7.8		23.4
2-			. /	./				~		./		8.6	7.4	8.3	8.3	22.9
3-	V	- V	1/			V	/	~	V	~		8.5	7.5	7.8	8.3	23.1
4-	1/3	115	1/1	1/8	1/6	416	1/7	47	1/6	1/7	56	8.5	7.4	7.5	8.3	
5-	13			./	219	219	21/2	2/13	Por	2/14	57	8.5	7.5	7.7	8.4	24.2
6-	219	2/13	2113	2/13	 	1	7		2/14	✓	62	8.8	7.5		8.4	23.6
7-	3/12	3/23	3/16		3/19	3/22	3/19	3/22	3/20	300	198			8.3	8.2	_
Total	24	41	30	44	34	37	38	42	40	43	373					
M/F	F									7						

Conc 81%

Day-Lab #	1	2	3	4	5	6	7	8	9	10	# Young	New D.O.	New pH	Old D.O.	Old pH	Daily Temp
·	'			-			·				Young	9.1	7.5	D.O.	pri	23.5°
0-			<u> </u>						\checkmark			91		74	8.3	
1-						\checkmark						 	7.1	1.0		
2-					V	/	V					8.9	7.4	8.4		53.1
3-	·/	V	V_	/	1	1	V	V		<u>//</u>		8.7	7.4	7.8		23.6
4-	1/6	1/6	1/6	1/3	1/7	1/5	116	115	1/7	1/9	60	8.9	7.4	79	84	DS.0
5-	1	/	1	/	2/13	2/9	2/12	2/11	/	2/6	51	8-8	7.4	7.8	8.4	242
6-	2/14	210	2/11	2/12	1	1	/		2/12		59	9,2	7.5	7.9	8.5	23.7
7-	3/22	3/17	3/21	3/23	3/22	3/21	3/15	3/18	3/20	3/20	199			8.5	8.3]
Total	42	33	38	38		35	33	34	39	35	369]				
M/F	F									→>						

conc 100 1

Day-Lab #	1	2	3	4	5	6	7	8	9	10	# Young	New D.O.	New pH	Old D.O.	Old pH	Daily Temp
0-		./						/		/		9,4	7.5			23.5
1-	1	1/							/			9.6	7.6	79	8.4	23.3
2-	7	<i></i>				V						9.3	7.4	8.4	8.4	23.2
3-	1	V	レ	V	V	レ	/	V		1		8.8	7.4	7.8	8.4	23.4
4-	116	1/5	117	117	1/6	116	117	116	116	1/4	60	9.0	7.3	7.2	8.5	24.6
5-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/			2/12	2/12	2/11	2/12	2/7	21/3	67	9.0	7.4	7.9	8.4	24.3
6-	2/14	2/12	2/15	2/14	1	/	V	/	✓		55	9.6	1,5	8.1	8.5	237
7-	3/22	3/20	3/21	319	3/20	3/22	3/10	3/16	3/13	3/15	178			6.8	8.4]
Total	42	37	43	35	38	40	28	34	26	32	360]				
				170	· · · · · · · · · · · · · · · · · · ·						ì					

Facility

Analytical Laboratories

Test ID Date

1714385 City of Caldwell WWTP

5/3/2017

Species Ceriodaphnia dubia (water flea)

Analyst

Test Type Chronic Survival

Chris Pate

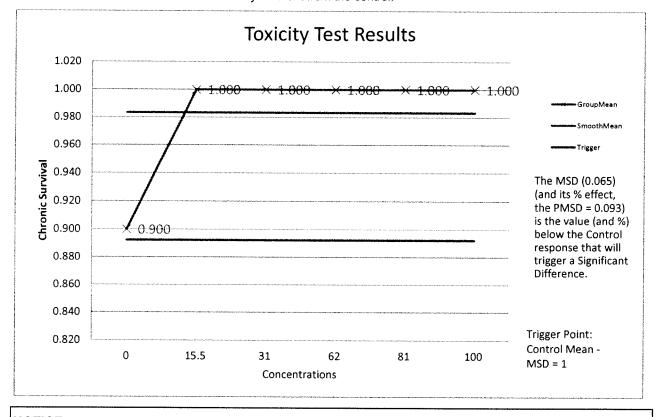
IWC Conc.

Input

Number of Organis	ms Expose	d or Counted				***	
			Concer	trations			
Replicate	<u>o</u>	<u>15.5</u>	<u>31</u>	<u>62</u>	<u>81</u>	<u>100</u>	
1	1	1	1	1	1	1	
2	1	1	1	1	1	1	
3	1	1	1	1	1	1	
4	1	1	1	1	1	1	
5	1	1	1	1	1	1	
6	1	1	1	1	1	1	
7	1	1	1	1	1	1	
8	1	1	1	1	1	1	
9	1	1	1	1	1	1	
10	1	1	1	1	1	1	

Number of Organisms Surviving or Responding

	Concentrations									
Replicate	<u>0</u>	<u>15.5</u>	<u>31</u>	<u>62</u>	<u>81</u>	<u>100</u>				
1	1	1	1	1	1	1				
2	1	1	1	1	1	1				
3	1	1	1	1	1	1				
4	1	1	1	1	1	1				
5	1	1	1	1	1	1				
6	1	1	1	1	1	1				
7	1	1	1	1	1	1				
8	1	1	1	1	1	1				
9	0	1	1	1	1	1				
10	1	1	1	1	1	1				


Total Organisms	10	10	10	10	10	10	
Total Responding	9	10	10	10	10	10	
% Responding	90.0%	100.0%	100.0%	100.0%	100.0%	100.0%	
Output							

TST	Calculated t-value		Table t-value		Relative % Effect at IWC	
100	>100		>100	N/A	N/A	
NOEC	LOEC		IC25	95% Conf	fidence Intervals	
	100	1.047	0.000	0.000	NS	
the transformed data used for endpoint calculations	81	1.047	0.000	0.000	NS	
	62	1.047	0.000	0.000	NS	
	31	1.047	0.000	0.000	NS	
Statistics are based or	15.5	1.047	0.000	0.000	NS	
	0	0.995	0.166	0.166		
Statistical Data	Conc.	Mean	Stdev	CV	Steel test	

 MSD
 PMSD

 0.065
 9.3%

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Facility Test ID

IWC Conc.

Date

Analytical Laboratories

1714385 City of Caldwell WWTP

5/3/2017

Analyst Chris Pate

Ceriodaphnia dubia (water flea) Species

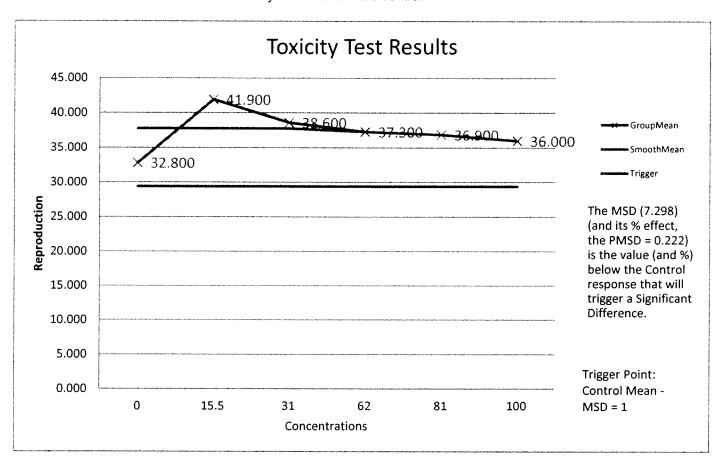
Test Type Reproduction

Input

			Concer	ntrations			
Replicate	<u>0</u>	<u>15.5</u>	<u>31</u>	<u>62</u>	<u>81</u>	<u>100</u>	
1	23	41	37	24	42	42	
2	44	34	37	41	33	37	
3	38	39	39	30	38	43	
4	27	42	34	44	38	40	
5	26	41	41	34	42	38	
6	39	46	41	37	35	40	
7	42	44	38	38	33	28	
8	45	44	41	42	34	34	
9	0	45	40	40	39	26	
10	44	43	38	43	35	32	

Mean	32.800	41.900	38.600	37.300	36.900	36.000
Stdev	14.148	3.479	2.271	6.343	3.414	5.831

Output


Statistical Data	Conc.	Mean	Stdev	CV	Steel test	
	0	32.800	14.148	0.431		
	15.5	41.900	3.479	0.083	NS	
	31	38.600	2.271	0.059	NS	
	62	37.300	6.343	0.170	NS	
	81	36.900	3.414	0.093	NS	
	100	36.000	5.831	0.162	NS	

NOEC	LOEC	IC25	95% Co	nfidence Intervals	
100	>100	>100	N/A	N/A	

TST	Calculated t-value	Table t-value	Relative % Effect at IWC

MSD	PMSD	
7.298	22.2%	

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

BENCH SHEET FOR S. capicornutum ALGAL GROWTH TEST. **EPA METHOD 1003.0**

LAB ID# 1714385 Analyst: cp/3c/wR
Discharged: Effluent

Description: Caldwell WWTP

Final Report Review: 5°C

Test Start Date/Time: 4-13-17, 1330

Test Stop Date/Time: 4-17-17, 1430

Lab Id # used to make dilutions: / 4848

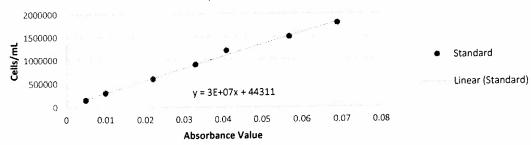
Daily pH and Temp.

CONCENTRATION	D	ay 0	Da	ay 1	D	ay 2	D	ay 3 .	D	ay 4	Comments
	рН	Temp	рΗ	Temp	pH.	Temp_	pН	Temp	рН	Temp	
Control	8.1	25.0	9.5	24.0	100	27.3	10.5	73.T	10.6	24.5	
15.5%	8.1	25.2	9.6	24.4	•••	٢, ٢	T.01	P.EG	10.7	24.4	
31%	8.0	25.4	9.5	23.9	เช.5	24.1	1.07	23.9	10.7	23.9	
62%	7.9	25,4	9.4	24.5	10.4	24.2	7.01	24.5	10.7	24.3	
81%	7.8	25.2	9,2	1 -	1	24.0					
100%	7.8	25.1	9.2	24.2	19.4)	24.5	10.7	23.2	10.8	24.4	

BENCH SHEET FOR S. capicornutum ALGAL GROWTH TEST

METHOD 1003.0 FINAL REPORT REVIEW

LAB ID# 1714385 ANALYST: CP/SC DISCHARGED: Effluent DISCHARGED: Effluent
DESCRIPTION: Calduell
Lab ID# used to make Dilutions:


 	miliai Aige	ie odani (cens		PROPERTY NAMED AND DESCRIPTIONS OF THE PARTY NAMED AND DESCRIPTION
Random Sample #1	Random Sample #2	Random Sample #3	Random Sample #4	Initial Average
Absorbance Value: . 0 1 2 Cells/mL: . 40		Absorbance Value: • 013 Cells/mL: _43	Value: - 013	Absorbance Value: . 0125 Cells/mL: . 419

Final Algae Count (cells/mL)

			o oddini (domeni	Name and Address of the Owner, which the	
CONCENTRATION	Rep. 1	Rep. 2	Rep. 3	Rep. 4	Average
CONTROL	Absorbance Value: 0.060 Cells/mL: 1.84	Absorbance Value: 0 · 0 5 0 Cells/mL: 1.54	Absorbance Value: 0.966 Cells/mL: 2.02	Absorbance Value: 0.065 Cells/mL: 1.99	Absorbance Value: .06 o Cells/mL: 1.85
15.5%	Absorbance Value: 0. 089 Cells/mL: 2.71	Absorbance Value: 0.0 95 Cells/mL: 2.89	Absorbance Value: 0.090 Cells/mL: 2.74	Absorbance Value: 0.092 Cells/mL: 2.80	
31%	Absorbance Value: 0.198 Cells/mL: 3.28	Absorbance Value: 0.11 o Cells/mL: 3.34	Absorbance Value: 0-110 Cells/mL: 3.34	Absorbance Value: 0, 109 Cells/mL: 331	Absorbance Value: 109 Cells/mL: 3.32
62%	Absorbance Value: 0.140 Cells/mL: 4, 24	Absorbance Value: 0.14 5 Cells/mL: 4,39	Absorbance Value: 0.143 Cells/mL: 4.33	Absorbance Value: 0.150 Cells/mL: 4.5 H	Absorbance Value: . 145 Cells/mL: 4.38
81%	Absorbance Value: 0 . 196 Cells/mL: 5.9 2	Absorbance Value: 0.188 Cells/mL:5.68	Absorbance Value: 0.197 Cells/mL: 5.95		Absorbance Value: 189 Cells/mL: 5, 70
100%	Absorbance Value: 0.245 Cells/mL: 7.39	Absorbance Value: 9:245 Cells/mL: 7.39	Absorbance Value 0. 21 8 Cells/mL: 6.58	Absorbance	Absorbance Value: , 241 Cells/mL:

^{*}Cells/mL are shown in millions

Selenastrum capricornutum Conversion Chart

^{*}Absorbance values (AV) obtained from Spectronic 601 spectrophotometer are used to determine cells/mL based on a standardized linear relationship ((3x10^7)(AV) + 44311).

Facility Test ID

Analytical Laboratories

1714385 City of Caldwell WWTP

Date **IWC Conc.**

5/3/2017

Analyst Chris Pate

Selenastrum capricornutum (green algae) Species

Test Type Growth

Input

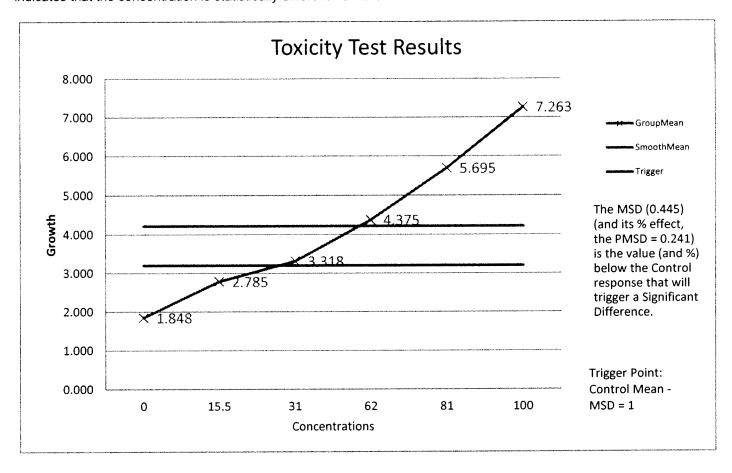
u.							
			Concer	trations			
Replicate	<u>o</u>	<u> 15.5</u>	<u>31</u>	<u>62</u>	<u>81</u>	<u>100</u>	
1	1.84	2.71	3.28	4.24	5.92	7.39	
2	1.54	2.89	3.34	4.39	5.68	7.39	
3	2.02	2.74	3.34	4.33	5.95	6.58	
4	1.99	2.8	3.31	4.54	5.23	7.69	

NOEC	LOEC		IC25	95% Confid	dence Inter	vals	
	100	7.263	0.476	0.066		NS	
	81	5.695	0.333	0.058		NS	
	62	4.375	0.126	0.029		NS	
	31	3.318	0.029	0.009		NS	
	15.5	2.785	0.079	0.029		NS	
	0	1.848	0.220	0.119			
Statistical Data	Conc.	Mean	Stdev	CV		Steel test	
Output							
Stdev	0.220	0.079	0.029	0.120	0.555	0.470	
			0.029	0.126	0.333	0.476	
Mean	1.848	2.785	3.318	4.375	5.695	7.263	

TST	Calculated t-value	Table t-value	Relative % Effect at IWC	

N/A

N/A


>100

MSD	PMSD	
0.445	24.1%	

100

>100

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

*SPC **CHAIN OF CUSTODY RECORD** PROJECT INFORMATION:

ANALYTICAL LABS, INC. 1804 N. 33rd Street • Boise, ID 83703

(208) 342-5515 • Fax: (208) 342-5591 • 1-800-574-5773 Website: www.analyticallaboratories.com

E-mail: ali@analyticallaboratories.com

TESTS REQUESTED

Purchase Order Number:

PWS Number:

Project Manager: Solvlodox Hyredo

CALDWW

Company:

Address:

CLIENT INFORMATION

CLIENT CODE-

208 Jannson Ln

Treater 6.77 > アガナス WATER Sample Matrix NATER WATER Transported by: (Please print) S, CuRTES Required Due Date: Sample Description (Source) 8 Bittles E-mail Address: し山乙 一世十 Phone: CaldWPII, ID 83LMS 108 455 8327K Fax: Sampled by: (Please print)

Lab ID Date Time Sampled 9540 FI-11-14 OHEGE1-11-17 SEE 11 04285 4-11-1 0740 14382 H-11-7 10744

ALLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparation and testing services, obtain findings and prepare reports in accordance with Good Laboratory Practices (GLP). If, for any reason, Analytical Laboratories, Inc. errors in the conduct of a test or procedure, their liability shall be limited to the cost of the test or procedure completed in error. Under no circumstances will Analytical Laboratories, Inc. be liable for any other cost associated with obtaining a sample or use of data.

Special Instructions

Invoice to: (if different than above address)

Note: Samples are discarded 21 days after results are reported. Hazardous samples will be returned to client or disposed of at client expense.

Relinquished By: (Spinature)	I W	Company: () () () ()	Date: Time; 2/7
Company of the Compan	agen (Thuke)	2000	11-11
veceived by: (significate)	SPECER CARTE	Company: ナナ	0460 41-11-4
Relinquished By (Signature)	Printhame: SPECCA CONTES	Company: And	Date: 4-1/-17 1/25
Received By: (Signature)	Print Name:	Company:	Date: Time:
SAMPLE RECEIPT Total # of Containers:		Chains of Custody Seals Y / N / (A) Intact: Y / N / (NA) Temperature Received: 5,0 1 Condition:	Condition: Caro

Analytical Laboratories, Inc.

1804 N. 33rd Street Boise, Idaho 83703 Phone (208) 342-5515

Date Report Printed:

5/3/2017 3:21:51 PM

http://www.analyticallaboratories.com

These test results relate only to the items tested.

Laboratory Analysis Report

Sample Number: 1714385

Attn: SALVADOR ARREOLA CALDWELL WASTEWATER

PO BOX 1179

CALDWELL, ID 83607

Collected By: K. CHATTIN

Submitted By: S. CURTIS

Source of Sample:

FE-C BIO MONITORING DAY 1

Time of Collection: 7:40

Date of Collection:

4/11/2017

Date Received:

4/11/2017

Report Date:

4/21/2017

PWS#:

Field Temp:

Temp Rovd in Lab:

5.0 °C

PWS Name:

Test Requested	MCL	Analysis Result	Units	MDL	Method	Date Completed	Analyst
Ceriodaphnia dubia		*			EPA 1002.0	4/21/2017	SC
Pimephales promela		*			EPA 1000.0	4/21/2017	SC
Selenastrum		*			EPA 1003.0	4/21/2017	SC
Ammonia Direct (as N)		0.07	mg/L	0.04	EPA 350.1	4/14/2017	CJS
Alkalinity		207	mg/L		EPA 310.1	4/12/2017	CJS
Chlorine Residual, Cl2		< 0.10	mg/L	0.10	EPA 330.5	4/11/2017	JMS
Conductivity		755	umhos	2	EPA 120.1	4/11/2017	JMS
Hardness		183	mg/L	5.0	SM 2340	4/12/2017	CJS
рН		7.3	S.U.		SM 4500-H B	4/11/2017	JMS

MCL = Maximum Contamination Level

CHAIN OF CUSTODY RECORD

CLIENT CODE:

3.) 73

FIRST Frances ALLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparation and testing services, obtain findings and prepare reports in accordance with Good Laboratories, Inc. errors in the conduct of a test or procedure, their liability shall be limited to the cost of the test or procedure completed in error. Under no circumstances will Analytical Laboratories, Inc. VOO/ 000 (208) 342-5515 • Fax: (208) 342-5591 • 1-800-574-5773 Total # of Containers: / 〇 │ Chains of Custody Séals Y / N / NA │ Intact: Y / N / (NA │ Temperature Received: 6. 🕫 │ Condition: (元の) Website: www.analyticallaboratories.com ANALYTICAL LABS, INC. E-mail: ali@analyticallaboratories.com 1804 N. 33rd Street • Boise, ID 83703 **TESTS REQUESTED** Note: Samples are discarded 21 days after results are reported. Hazardous samples will be returned to client or disposed of at client expense. NET OF PINK: SAMPLER Company: Company: Company: Company: THITE G P L THE STATE OF THE S MALLEY THE SELL Sample Matrix Special Instructions: YELLOW, LAB Print Name: Purchase Order Number: his pt Print Name: LACIS Pate Transported by: (Please print) / Required Due Date: 1911 Sample Description (Source) E-mail Address: Project Name: PWS Number: WHITE: STAYS WITH SAMPLE (S) be liable for any other cost associated with obtaining a sample or use of data. Print Name: G, Print Name: ロインゴム ーリエ The state of ----Project Manager: Salva 197 Price (CT CTANEL DE CLIENT INFORMATION: Invoice to: (If different than above address) 上しているでは Date Time Sampled Sampled CHICE I 4-12-12 10 430 以此一世公古 11-2-11 CAL されるはかかり Sampled by: (Please print) SINGULA) Phone: CK HOS SON Relinquished By: (Signature)) Relinquished By: (Signature) Received By: (Signature) Received By: (Signature) SAMPLE RECEIPT くかそりし phone Lab ID Company: Address:

Analytical Laboratories, Inc.

1804 N. 33rd Street Boise, Idaho 83703 Phone (208) 342-5515

Date Report Printed:

5/3/2017 3:59:16 PM

http://www.analyticallaboratories.com

These test results relate only to the items tested.

Laboratory Analysis Report

Sample Number: 1714848

Collected By: K. CHATTIN

Submitted By: C. PATE

Source of Sample:

FE-C BIOMONITORING DAY 2

Time of Collection:

PO BOX 1179

7:43

Attn: SALVADOR ARREOLA

CALDWELL WASTEWATER

CALDWELL, ID 83607

Date of Collection:

4/13/2017

Date Received:

4/13/2017

Report Date:

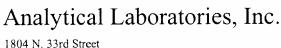
4/26/2017

PWS#:

Field Temp:

Temp Rovd in Lab:

PWS Name:


Test Requested	MCL	Analysis Result	Units	MDL	Method	Date Completed	Analyst
Ammonia Direct (as N)		0.58	mg/L	0.04	EPA 350.1	4/14/2017	CJS
Alkalinity		201	mg/L		EPA 310.1	4/25/2017	CJS
Chlorine Residual, Cl2		< 0.10	mg/L	0.10	EPA 330.5	4/13/2017	JMS
Conductivity		790	umhos	2	EPA 120.1	4/13/2017	JMS
Hardness		185	mg/L	5.0	SM 2340	4/25/2017	CJS
рН		7.6	S.U.		SM 4500-H B	4/13/2017	RME

35

CHAIN OF CUSTODY RECORD

CLIENT CODE=

CNI VOV - IVCITY IVIN	1804 N. 33rd Street • Boise, ID 83703	(208) 342-5515 • Fax: (208) 342-5591 • 1-800-574-5773 Website: www.analyticallaboratories.com	E-mail: ali@analyticallaboratories.com TESTS REQUESTED		5.3° X		UN Remarks:	FEELD FAP: 5.4°C							ALLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparation and testing services, obtain findings and prepare reports in accordance with Good Laboratory Practices (GLP). If, for any reason, Analytical Laboratories, Inc. errors in the conduct of a test or procedure, their liability shall be limited to the cost of the test or procedure completed in error. Under no circumstances will Analytical Laboratories, Inc. be liable for any other cost associated with obtaining a sample or use of data.		Date: 4-14-17	Date:		4C1 Time:	Temperature Received: 5.46 Condition: Cut)	PINK SAMPLER
PROJECT INFORMATION:	Project Name:	PWS Number:	Purchase Order Number:	Required Due Date:	E-mail Address:	print) S.CAPTES	Sample Matrix	4-CONTAINERS) 420	Dr, 3					Special Instructions:	on and testing services, obtain findings and prepliability shall be limited to the cost of the test or	samples will be retu	E CROSS COMPANY.	Curtis	GRTIS Company:	Tom Surface Company:	stody Seals Y / N (N) Intact: Y /	YELLOW: LAB
CLIENT INFORMATION:	50LA	Company: CALDWW	on (n).	. 50	Fax:	Sampled by: (Please print) EC (2055 Transported by: (Please	Lab ID Date Time Sample Description (Source) Sampled Sampled	15009 4-14-17 07:42 FE-C (4	9					Invoice to: (If different than above address)	ALLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparatio Analytical Laboratories, Inc. errors in the conduct of a test or procedure, their be liable for any other cost associated with obtaining a sample or use of data.	Note; Samples are diecalded 21 days after results are reported. Hazardous	autshad By A Signatural Print Name:	Received By Contained Spelice	Relinquished By: J. Signature)	Received By: (Signature)	SAMPLE RECEIPT Total # of Containers: 4 Chains of Custody	KEV. 213/12 WITH SAMPLE

1804 N. 33rd Street Boise, Idaho 83703 Phone (208) 342-5515

Attn: SALVADOR ARREOLA

Date Report Printed:

4/26/2017 11:55:04 AM

http://www.analyticallaboratories.com

These test results relate only to the items tested.

Laboratory Analysis Report

Sample Number: 1715009

Collected By: D. CROSS

CALDWELL WASTEWATER

Submitted By: S. CURTIS

PO BOX 1179

CALDWELL, ID 83607

Source of Sample:

FE-C BIO MONITORING DAY 3

Time of Collection:

7:42

Date of Collection:

4/14/2017

Date Received:

4/14/2017

Report Date:

4/26/2017

PWS#:

Field Temp:

5.4 °C

Temp Rcvd in Lab: 5.1 °C

PWS Name:

Test Requested	MCL	Analysis Result	Units	MDL	Method	Date Completed	Analyst
Ammonia Direct (as N)		0.70	mg/L	0.04	EPA 350.1	4/14/2017	CJS
Alkalinity		197	mg/L		EPA 310.1	4/25/2017	CJS
Chlorine Residual, Cl2		< 0.10	mg/L	0.10	EPA 330.5	4/14/2017	JH
Conductivity		800	umhos	2	EPA 120.1	4/14/2017	JH
Hardness		191	mg/L	5.0	SM 2340	4/25/2017	CJS
рН		7.5	S.U.		SM 4500-H B	4/14/2017	JH

MCL = Maximum Contamination Level MDL = Method/Minimum Detection Limit

Permit No.: ID0021504

Page 11 of 51

Ta	ible 3: Total Phosphori	us Interim Effluent Limits and Compliance Schedule Dates
		Complete Bidding
6	January 31, 2024	Deliverable: The permittee will provide DEQ and EPA with written notice that the Bid has been awarded.
7	April 30, 2024	Start Construction Deliverable: The permittee will provide DEQ and EPA with a copy of the Notice to Proceed with construction.
8	April 30, 2026	Complete Construction Deliverable: The permittee will provide DEQ and EPA with written notice that the construction is completed.
9	September 30, 2026	Process Optimization and Achieve Final Effluent Limitation Deliverable: The permittee must achieve compliance with the final effluent limitations and provide DEQ and EPA with written notice of compliance with final effluent limitations.

Notes:

2. The annual average total phosphorus concentration and load must be reported on the December DMR

D. Whole Effluent Toxicity Testing Requirements

The permittee must conduct chronic toxicity tests on effluent samples from outfall 001. Testing must be conducted in accordance with subsections 1 through 7, below.

1. Toxicity testing must be conducted on 24-hour composite samples of effluent. In addition, a split of each sample collected must be analyzed for the chemical and physical parameters required in Part I.B, above, with a required effluent sampling frequency of once per month or more frequently, using the sample type required in Part I.B. For parameters for which grab samples are required in Part I.B, grab samples must be taken during the same 24-hour period as the 24-hour composite sample used for the toxicity tests. When the timing of sample collection coincides with that of the sampling required in Part I.B, analysis of the split sample will fulfill the requirements of Part I.B as well.

2. Chronic Test Species and Methods

- a) For outfall 001, chronic tests must be conducted once per quarter. Quarters are defined as January March, April through June, July September, and October December.
- b) The permittee must conduct short-term tests with the water flea, Ceriodaphnia dubia (survival and reproduction test), the fathead minnow, Pimephales promelas (larval survival and growth test), and a green alga, Selenastrum capricornutum (growth test) for the first three suites of tests. After this screening period, monitoring must be conducted using the most sensitive species, which is defined below.

^{1.} The annual average total phosphorus concentration and load must be calculated as the sum of all daily discharges measured for total phosphorus during a calendar year, divided by the number of daily discharges measured for total phosphorus during that year.

Permit No.: ID0021504 Page 12 of 51

(i) The most sensitive species is the species which, during the screening period, produces the greatest maximum toxicity result in chronic toxic units (TUc), which is defined in Part I.D.2.d, below.

- (ii) If all three species produce the identical maximum toxicity result (including no toxicity in 100% effluent) the permittee must use Ceriodaphnia dubia for subsequent tests.
- (iii) If two species produce the identical maximum toxicity result, which is greater than 1.0 TU_c and also greater than the maximum toxicity result of the third species, the permittee may use either of the two species producing the greater maximum toxicity result for subsequent tests.
- c) The presence of chronic toxicity must be determined as specified in *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*, Fourth Edition, EPA/821-R-02-013, October 2002.
- d) Results must be reported in TU_c (chronic toxic units), which is defined as follows:
 - (i) For survival endpoints, $TU_c = 100/NOEC$.
 - (ii) For all other test endpoints, $TU_c = 100/IC_{25}$.
 - (iii) IC₂₅ means "25% inhibition concentration." The IC₂₅ is a point estimate of the toxicant concentration, expressed in percent effluent, that causes a 25% reduction in a non-quantal biological measurement (e.g., reproduction or growth) calculated from a continuous model (e.g., Interpolation Method).
 - (iv) NOEC means "no observed effect concentration." The NOEC is the highest concentration of toxicant, expressed in percent effluent, to which organisms are exposed in a chronic toxicity test [full life-cycle or partial life-cycle (short term) test], that causes no observable adverse effects on the test organisms (i.e., the highest concentration of effluent in which the values for the observed responses are not statistically significantly different from the controls).

3. Quality Assurance

- a) The toxicity testing on each organism must include a series of five test dilutions and a control. The dilution series must include the receiving water concentration (RWC), which is the dilution associated with the average monthly whole effluent toxicity limits, two dilutions above the RWC, and two dilutions below the RWC. The RWCs are:
 - (i) 62% effluent for April June
 - (ii) 39% effluent for July March
- b) All quality assurance criteria and statistical analyses used for chronic tests and reference toxicant tests must be in accordance with Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to

Permit No.: ID0021504 Page 13 of 51

Freshwater Organisms, Fourth Edition, EPA/821-R-02-013, October 2002, and individual test protocols.

- c) In addition to those quality assurance measures specified in the methodology, the following quality assurance procedures must be followed:
 - (i) If organisms are not cultured in-house, concurrent testing with reference toxicants must be conducted. If organisms are cultured in-house, monthly reference toxicant testing is sufficient. Reference toxicant tests must be conducted using the same test conditions as the effluent toxicity tests.
 - (ii) If either of the reference toxicant tests or the effluent tests do not meet all test acceptability criteria as specified in the test methods manual, the permittee must re-sample and re-test within 14 days of receipt of the test results.
 - (iii) Control and dilution water must be receiving water or lab water, as appropriate, as described in the manual. If the dilution water used is different from the culture water, a second control, using culture water must also be used. Receiving water may be used as control and dilution water upon notification of EPA and IDEQ. In no case shall water that has not met test acceptability criteria be used for either dilution or control.

4. Reporting

- a) The permittee must submit the results of the toxicity tests with the discharge monitoring reports (DMRs). Results must be reported on the DMRs for the last month of the quarter in which the samples were taken.
- b) The report of toxicity test results must include all relevant information outlined in Section 10, Report Preparation, of Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition, EPA/821-R-02-013, October 2002. In addition to toxicity test results, the permittee must report: dates of sample collection and initiation of each test; flow rate at the time of sample collection; and the results of the monitoring required in Part I.B of this permit, for parameters with a required monitoring frequency of once per month or more frequently.
- 5. Preparation of initial investigation toxicity reduction evaluation (TRE) workplan: By January 31, 2017, the permittee must submit to EPA a copy of the permittee's initial investigation TRE workplan. This plan shall describe the steps the permittee intends to follow in the event that chronic toxicity is detected above the applicable effluent limits in Table 1 of this permit, and must include at a minimum:
 - a) A description of the investigation and evaluation techniques that would be used to identify potential causes/sources of toxicity, effluent variability, treatment system efficiency;

Permit No.: ID0021504 Page 14 of 51

b) A description of the facility's method of maximizing in-house treatment efficiency, good housekeeping practices, and a list of all chemicals used in operation of the facility; and

- c) If a toxicity identification evaluation (TIE) is necessary, who will conduct it (i.e., in-house or other).
- d) The initial investigation TRE workplan must be sent to the following address:

US EPA Region 10 Attn: NPDES WET Coordinator 1200 Sixth Avenue Suite 900 OWW-191 Seattle, WA 98101-3140

- 6. Accelerated testing: If chronic toxicity is detected above the applicable average monthly limit for whole effluent toxicity in Part I.B or I.C of this permit, the permittee must comply with the following:
 - a) The permittee must conduct six more bi-weekly (every two weeks) chronic toxicity tests, over a 12-week period. This accelerated testing shall be initiated within 10 calendar days of receipt of the test results indicating the initial exceedance.
 - b) The permittee must notify EPA of the exceedance in writing at the address in Part I.C.5.d, above, within 5 calendar days of receipt of the test results indicating the exceedance. The notification must include the following information:
 - (i) A status report on any actions required by the permit, with a schedule for actions not yet completed.
 - (ii) A description of any additional actions the permittee has taken or will take to investigate and correct the cause(s) of the toxicity.
 - (iii) Where no actions have been taken, a discussion of the reasons for not taking action.
 - c) If none of the six accelerated chronic toxicity tests required under Part I.C.6.a are above the applicable average monthly limit in Part I.B or I.C of this permit, the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.
 - d) If any of the six accelerated chronic toxicity tests required under Part I.C.6.a are above the applicable average monthly limit in Part I.B or I.C of this permit, then the permittee must implement the initial investigation TRE workplan as described in Part I.D.7.
- 7. Implementation of Initial Investigation TRE Workplan
 - a) The permittee must implement the initial investigation TRE workplan within 48 hours of the permittee's receipt of the accelerated toxicity test result demonstrating an exceedance of the applicable average monthly limit in Part I.B or I.C of this permit.

Permit No.: ID0021504 Page 15 of 51

(i) If implementation of the initial investigation workplan clearly identifies the source of toxicity to the satisfaction of EPA (e.g., a temporary plant upset), the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.

(ii) If implementation of the initial investigation workplan does not clearly identify the source of toxicity to the satisfaction of EPA, then the permittee must begin implementation of further toxicity reduction evaluation (TRE) requirements in part I.D.8 below.

8. Detailed TRE/TIE

- a) If implementation of the initial investigation workplan does not clearly identify the source of toxicity to the satisfaction of EPA, then, in accordance with the permittee's initial investigation workplan and EPA manual EPA 833-B-99-002 (*Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants*), the permittee must develop as expeditiously as possible a more detailed TRE workplan, which includes:
 - (i) Further actions to investigate and identify the cause of toxicity;
 - (ii) Actions the permittee will take to mitigate the impact of the discharge and to prevent the recurrence of toxicity; and
 - (iii) A schedule for these actions.
- b) The permittee may initiate a TIE as part of the overall TRE process described in the EPA acute and chronic TIE manuals EPA/600/6-91/005F (Phase I), EPA/600/R-92/080 (Phase II), and EPA-600/R-92/081 (Phase III).
- c) If the detailed TRE/TIE clearly identifies the source of toxicity to the satisfaction of EPA, the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.

9. Inconclusive TRE/TIE

- a) If the detailed TRE described in Part I.D.8 is inconclusive, the permittee must conduct six bi-weekly (every two weeks) chronic toxicity tests, over a 12-week period. This accelerated testing shall be initiated within 10 calendar days of completing the detailed TRE/TIE.
- b) If none of the six accelerated chronic toxicity tests required under Part I.D.9.a exceed the applicable average monthly limit in Part I.B or I.C of this permit, the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.
- c) If any of the six accelerated chronic toxicity tests required under Part I.D.9.a exceed the applicable chronic toxicity trigger in Part I.D.6 of this permit, then the permittee must repeat the TRE/TIE process described in Part I.D.8.

E. Surface Water Monitoring

The permittee must conduct surface water monitoring. The program must meet the following requirements:

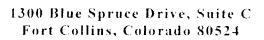
PAGE | OF 3

BENCH SHEET FOR CERIODAPHNIA SURVIVAL/REPRODUCTION TEST. EPA Method 1002.0

LAB ID#173228 Discharged: Effluent Test Start Da

Description: C. Many Mills Day 2: 6.7° Day 3: 5.5° C

Temp Received: Day 1: 2,6° Day 2: 6.7° Day 3: 5.5° C


Analyst: cp/w Final Report Review: 5c
Test Start Date/Time: 4/17 1430

Test Stop Date/Time: 4/11/17 , 1230

Renewal Lab Numbers: Day 0 & 1:\3228 Day 2 & 3:\3724 Day 4, 5 & 6: 14108

Conc	Control	

Day-Lab #	1	2	3	4	5	6	7	8	9	10	# Young	New D.O.	New pH	Old D.O.	Old pH	Daily Temp
0-	,/	/	/		✓	\	✓	✓		\checkmark		7.6	7.5			22,4
1-	1	/	/	V	/	>	/	_/	/	~		7.5	7.7	8.1	8.0	73.7
2-	/		/	~	✓	>	\	\ 	/	/		75	7.7	8.3.	8,4	249
3-	✓	/	/	/		\	\	\				7.4	7.5	8.3	8.4	23.7
4-	1/1	1/6	1/4	/	1/5	1/4	\	\	/	1/4	24	7.5	7.8	9.0	8.3	23.4
5-	✓	✓	2113	1/3	2/11	✓	115	و	1/5	2/12	5755	<u>,</u> 7.	7.8	8.0	8.3	23.2
6-	2/12	2/12	✓	2/13	\	2/10	2/14	2/13	2/14	✓	4 88	8.1	7.8	7.9	8.3	23.0
7-	3/19	3/18	3/21	3/19	3/13	3/17	3/18	/	3/19	3/18				8.7	8.4]
Total	32	36	38	35	29	31	37	19	38	34	329					
M/F	F.									>						

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATF:	4/10	2017	** Monte Control (Mark to And Section 1112 Market Control (Market Control (Mar
SPECIES:	Pime	phales prometas	
AGE:	N/A		No. 1 mars of colores and who is placed any colores are set of the colores and any colores are set
LIFE STAGE:	Embr	<u>yo</u>	
HATCH DATE:	4/10/	2017	
BEGAN FEEDING:	N/A		
FOOD:	N/A		
Water Chemistry Record:		Current	Range
TEMPERAT	URE:	24°C	
SALINITY/CONDUCTIV	vITY:	AR UF	TO THE OWNER OF THE OWNER
TOTAL HARDNESS (as Ca	CO,):	120 mg l	A TO THE RESIDENCE OF THE PARTY
TOTAL ALKALINITY (as Ca	CO ₃):	100 mg/l	
	pH:	8.06	
Comments:			
		Fiftelle	
**************************************		Facility Supervisor	

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

Algae Preparation History

DATE:	4/10/2017
SPECIES:	Raphidocelis subcapitata*
INOCULATION DATE:	3/21/2017
HARVEST DATE:	3/27/2017
CONCENTRATION DATE:	3:29 2017
CELL COUNT (/ml):	3.0 x 10 ⁷ cells/ml

Comments:

- * Formerly known as Psuedokirselmeriella subcapitata and Selenastrum capricornutum
- ** All concentrated algae diluted to proper cell count with reconstituted moderately hard DI water.

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel:970/484-5091 Fax:970/484-2514

YTC TOTAL SOLIDS MEASUREMENT

(Method from EPA/505/8-89-002a)

YTC Process Date:

3/22/2017: Best if used by 6/30/2017

Average Total Solids:

1850 mg/l

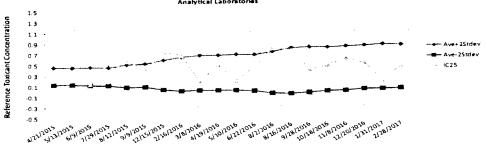
Ingredient Lot Numbers

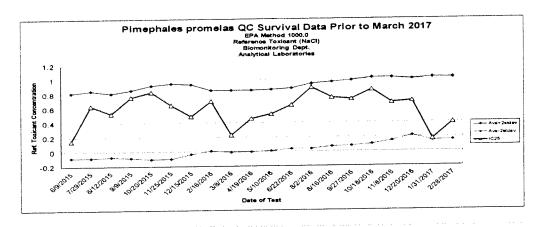
Pines International® Wheat Grass; COCDW12S50; Zeigler Finfish Starter #1 (Lot 10/19/2016); Fleischmanns Yeast; G-3

Analyzed Metals	Report Limits	Results (mg/L)
Alaminum	0.03	0.08
Arsenic	0.001	U
Cadmium	0.001	U
Chromium	0.005	U
Copper	0.05	0.033
Iron	0.02	0.24
Lead	0.001	L:
Mercury	0.001	L
Nickel	0.005	U
Silver	0.001	[
Zine	0.01	0.14

EPA Required Toxic M		e Analyses*
Compounds	Report Limits	Results (ug/L)
Aldrin	0.5	T T
alpha-BHC	0.5	T U
beta-BHC	0.5	Ū
delta-BHC	0.5	U
gamma-BHC (Lindane)	0.5	t.
alpha-Chlordane	0.5	U
gamma-Chlordane	0.5	I.
4,4' DDD	0.5	T T
4.4' – DDE	0.5	T i
4,4° –DDT	0.3	i.
Dieldrin	0.5	
Endosulfan I	0.5	i i
Endosulfan II	0.5	
Endosulfan sulfate	0.5	1
Endrin	0.5	i
Endrin aldehyde	0.5	i
Endrin ketone	0.5	Ü
Heptachlor	0.8	Ü
Heptachlor epoxide	0.5	L L
Methozychlor	0.5	i i
Chlordane (technical)	5.0	ſ.
Toxaphene	25	ť
Aroclor-1016	5.0	ľ
Aroclor-1221	5.0	ì
Aroclor-1232	5.0	ì
Aroctor-1242	5.0	i i
Aroclor-1248	5.0	t.
Vroelor-1254	5.0	L.
Vrocior-1260	5.0	<u>`</u>
Aroclor-1262	5.0	(
Aroclor-1268	5.0	

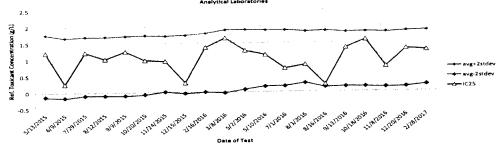
U - Indicates compound was analyzed for but not defected.

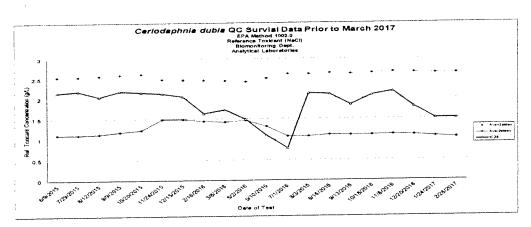

^{*}Testing performed by Energy Labs, Billings, Montana


Literature Cited

- Short-Term methods for Estimating the Chronic Toxicity of Effluents and receiving
 Waters to Freshwater Organisms, Fourth Edition. October 2002. EPA-821-R-02-013.
- 2. <u>Methods for Measuring the Chronic Toxicity of Effluents to Freshwater and Marine Organisms</u>, EPA/600/4-85/013, US EPA.
- 3. <u>Standard Methods for the Examination of Water and Wastewater</u>, 19 Edition, 1995, APHA, AWWA, WPCF.
- 4. <u>Handbook for Analytical Quality Control in Water and Wastewater Laboratories</u>, Environmental Monitoring and Support Laboratory, Cincinnati, EPA/600/4-79/019, US EPA

Pimephales promelas QC Growth Data Prior to March 2017 EPA Method 1000.0 Reference Toxicant (NaCl)


Reference Toxicant (NaCl)
Biomonitoring Dept.
Analytical Laboratories



Ceriodaphnia dubia QC Reproduction Data Prior to March 2017

EPA Method 1002.0 Reference Taxicant (NeCl) Biomonitoring Department Analytical Laboratories

PAGE 1 OF 2

BENCH SHEET FOR OC CERIODAPHNIA SURVIVAL/REPRODUCTION TEST.

TEST MONTH MAR. 2017

Test Start Date/Time: 2/18/17, 1530

Analyst: 4/54/wa
Test Stop Date/Time: 3/1/17, 1300

New New Old Daily Young D.O. рΗ D.O. Old pH Temp

Conc. CONTROL

Day-Lab #	1	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	XXX	XXX
0		/	V	V	V	/	√	✓	~	1		7.3	7.2	XXX	XXX	24.2
1	<u> </u>	/	/	/	/	/	_/		_	(7.5	7.9	8.0	8.2	.23.3
2	/	/	/	/	√	/	/		/	/		7.3	7.8	3.2	8.2	24.1
3		/	/	/	/	/	1/1	/	/	1/2	3	7.3	7.8	8.1	8.3	22.7
4	1/3	1/4	1/3	1/4	1/4	1/2	/	1/5	1/6		31	7.3	7.3	8.0	8.3	23.7
5	/	2/10	V	/	2/8	219	2/6	219	216	2/7	55	7.5	7.7	8.3	8.2	22.9
6	2/10	'	2/8	2/9	1	/	3/10	3/11	V	3/14	62	7.6	7.8	8.0	7.7	23.7
7	3/15	3/14	3/15	3/13	3/15	3/12	/	4/17	3/16		106			8.1	8.0	
Total	86	28	26	26	27	23	17	25	28	23	251					

New New Old Daily Young D.O, рΗ D.O. Old pH Temp

Conc. 0.50 g/L

Day-Lab #	1	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	XXX	XXX
0	~	_	· ·	٠,	./	1		./				7.3	7.4	XXX	XXX	24.3
1	/	/		/	/	/	/	/	0			7.4	7.9	8.0	8.3	23. 7
2	/		/	/	-	/		_	1	/		7.4	7.9	3.2	8.3	24.2
3	/	/		/	1/3	/	/	/		/	3	7.3	71	3.2	84	22.9
4	1/6	1/2	1/3	1/4	1	1/5	1/3	1/4		1/3	30	7.2	7.9	8.0	8.4	24.1
5	V	√	v	2/7	2/9	V	2/7	/		2/8	31	7.5	7.7	8.2	8.4	22.9
6	2/11	2/8	2/9	1	3/11	2/1/	/	218		/	58	7.6	7.9	8.0	8.2	23.8
7	3/14	3/15	3/6	/	4/10		3/17	3/6	V	3/11	69			8.1	8.1	-
Total	31	75	18	11	23	16	27	18	0	22	191					

New New Old Daily Young D.O, D.O. pН Old pH Temp

Conc. 1.25 g/L

Day-Lab #	1	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	XXX	XXX
0	<u> </u>		1	./	/	~		/	./		-	7.2	7.6	XXX	XXX	24.5
1	/		/	<u></u>	_	/		/	0	/		7.4	7,9	8.1	8.3	23.9
2			'	·/	·/	1/	سريا	/	1	/		マイラベ	7.3	3.2	8.3	24.2
3	/	/		/		/	_	<i>~</i>		سس		7.3	7.9	8.2	8.4	23.i
4	1/2	/	1/3	1/3	1/2	1/3	1/4	1/3		/	20	7.3	8.0	8.0	3.3	24.3
5	217	118	/	217	2/6	2/11	1	218		1/7	54	7.5	7.8	8.0	3.4	27-8
6	V	2/9	218	3/10	/	/	/	/		2/8	35	7.6	7.9	7.9	8.2	28-8
7	3/12		3/14	4/13	3/12	315	2/12	V	V	3/13	85			8.1	8,2	
Total	21	34	25	90	20	19	الح	11	9	86	194					

2 of 2 **PAGE**

Old

D.O.

BENCH SHEET OC CERIODAPHNIA SURVIVAL/REPRODUCTION TEST.

TEST MONTH MAR. 2017

Test Start Date/Time: 2/23/17, 1530

Analyst: cp/sc/wh Test Stop Date/Time: 3/7/17

New New Young D.O. рΗ

Daily Old pH Temp

Conc. 2.00 g/L

Day-Lab #	1	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	XXX	XXX
0	<u> </u>	~		U	/	~	<u></u>		V			7.2	7.6	XXX	xxx	24.6
1	0	/	/	/		/	/	/	ס	/		7.4	7.9	8.3	8.4	23.8
2	<u> </u>	/			0	/		/	1	/		7.3	7.8	3.2	8.3	24.2
3		/	/	/			/	/		1		7.3	7.9	8.3	8.3	23.2
4		/	✓	0		/	1/1	1/2		0	3	7.3	3.0	7.9	8.4	24.3
5		<u> </u>	V			1//	レ	/		Ĺ	1	7.7	8.0	8.3		22.9
6		/	1/4			V	~	/	\bot		4	7.6	7.4	7.9	7.9	23,6
7	V	<u>/</u>	2/7	V	V	_	2/9	2/9	4	1	32			8.1	8.1	
Total	0	0	11	0	0	8	10	11	0	0	40					

New New Old Daily Young D.O, рΗ D.O. Old pH Temp

Conc.	2.75	g/L									roung	<i>5</i> .0,	þΠ	D.O.	Ola pH	remp
Day-Lab #	11	2	3	4	5	6	7	8	9	10	xxx	XXX	XXX	XXX	XXX	XXX
0		/	/	1	V		_/	/				7.1	7.6	XXX	XXX	24.7
1	/	/	/	V	0	/	/		0	/		7.4	7.8	8.2	8.4	24.0
2	/	۵	D	V		D	<u>D</u>	O	1	Ŋ		7.4	7.8	8.3	8.3	24.3
3	\mathcal{U}			0								7.3	7.8	_	*	23.3
4	<u> </u>			1			_									
6						_	- -	_								
7					-[-		1,	- -								
Total	0	<u>V</u>	0	0	0	V	v	4	×	4	\sim					
rotal			<u> </u>	U		\cup	0	0	U	_0	<u> </u>					

New New Old Daily Young D.O, рΗ D.O. Old pH Temp

Conc.	3.50	g/L									roung	D.O,	рп	D.O.	Ola pH	Temp
Day-Lab #	1	2	3	4	5	6	7	8	9	10	xxx	XXX	XXX	XXX	XXX	XXX
0		<u> </u>	/	/	~		/	~				7.0	7.6	XXX	XXX	24:
1	٥	0	0	D	D	0	D	D	D	D		7-4	7.8	8.5	8.5	24.0
2		j				1	1									
3					1											
4							1	Ш_								
5		_	_	_												
7	+															
/	•	V	A	V	7	V	V	1	V	A						
Total	0	0	0	0	0	<u></u> 0	0	0	0	0	0					

Facility Test ID Analytical Laboratories

Date IWC Conc.

QC February 2017 1/31/2017 Analyst

Will Reynolds

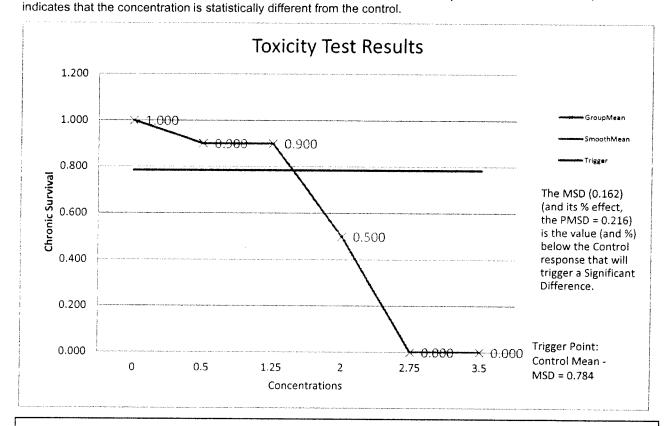
Species Ceriodaphnia dubia (water flea)

Test Type Chronic Survival

Input

Number of Organis	sms Expose	d or Counted	J				
			Concen	trations			
Replicate	<u>0</u>	<u>0.5</u>	<u>1.25</u>	2	<u>2.75</u>	<u>3.5</u>	
1	1	1	1	1	1	1	
2	1	1	1	1	1	1	
3	1	1	1	1	1	1	
4	1	1	1	1	1	1	
5	1	1	1	1	1	1	
6	1	1	1	1	1	1	
7	1	1	1	1	1	1	
8	1	1	1	1	1	1	
9	1	1	1	1	1	1	
10	1	1	1	1	1	1	

Number of Organisms Surviving or Responding


			Concent	trations		
Replicate	<u>0</u>	<u>0.5</u>	<u>1.25</u>	2	2.75	<u>3.5</u>
1	1	1	1	0	0	0
2	1	1	1	1	0	0
3	1	1	1	1	0	0
4	1	1	1	0	0	0
5	1	1	1	0	0	0
6	1	1	1	1	0	0
7	1	1	1	1	0	0
8	1	1	1	1	0	0
9	1	0	0	0	0	0
10	1	1	1	0	0	0

Total Organisms	10	10	10	10	10	10	
Total Responding	10	9	9	5	0	0	
% Responding	100.0%	90.0%	90.0%	50.0%	0.0%	0.0%	
Output							

MSD	PMSD				
TST	Calculated t	t-value	Table t-va	lue	Relative % Effect at IWC
2	2.75		1.51	0.73	2.04
NOEC	LOEC		IC25	95% Conf	idence Intervals
	3.5				Υ
calculations	2.75			3,33,	Y
used for endpoint	2	0.785	0.276	0.351	NS
the transformed data	1.25	0.995	0.166	0.166	NS
Statistics are based or	0.5	0.995	0.166	0.166	NS
	0	1.047	0.000	0.000	
Statistical Data	Conc.	Mean	Stdev	CV	Steel test

0.162 21.6%

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y"

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Facility Test ID

Analytical Laboratories

QC February 2017 -9-3-1/3-172017 -9/3-8

Analyst Species

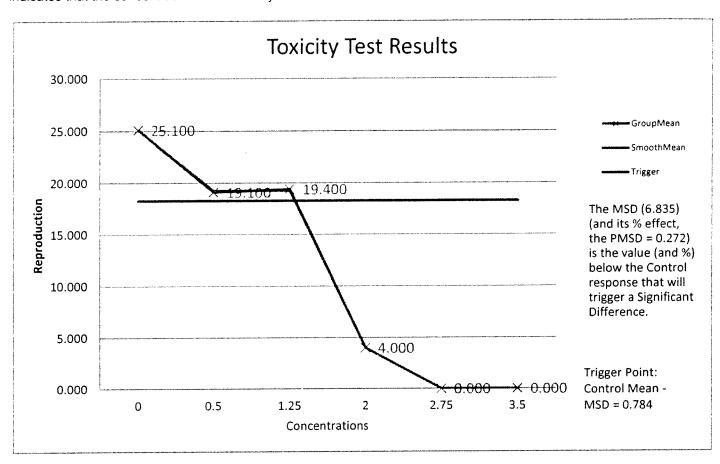
Will Reynolds

Ceriodaphnia dubia (water flea) Test Type Reproduction

Date **IWC Conc.**

Input

			Concen	trations			
Replicate	<u>0</u>	<u>0.5</u>	<u>1.25</u>	2	<u>2.75</u>	<u>3.5</u>	
1	28	31	21	ō	0	0	
2	28	25	34	0	0	0	
3	26	18	25	11	0	0	
4	26	11	20	0	0	0	
5	27	23	20	0	0	0	
6	23	16	19	8	0	0	
7	17	27	16	10	0	0	
8	25	18	11	11	0	0	
9	28	0	0	0	0	0	
10	23	22	28	0	0	0	


Mean	25.100	19.100	19.400	4.000	0.000	0.000	
Stdev	3.414	8.850	9.312	5.228	0.000	0.000	
Output							
Statistical Data	Conc.	Mean	Stdev	CV		Steel test	
	0	25.100	3.414	0.136			
	0.5	19.100	8.850	0.463		NS	
	1.25	19.400	9.312	0.480		NS	
	2	4.000	5.228	1.307		Y	
	2.75	0.000				Υ	
	3.5	0.000				Υ	

NOEC	LOEC	IC25	95% Co	onfidence Intervals
1.25	2	1.27	0.30	1.44

TST	Calculated t-value	Table t-value	Relative % Effect at IWC	

MSD	PMSD	
6.835	27.2%	

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Bench Sheet For Fathead Minnow QC Survival Test Method 1000.0

Test Month/Year: Test Start Date/Time: Feb. 2017 2-21-17, 1400

Analyst: Cp/WR
Test Stop Date/Time: 2/18/17,1300

Day				Re	eference Toxic	cant Used: So	odium Chloric	ie			
Control	Day		0	1	2	3	4	5	6	7	Remarks
	Conc:	Beaker#									
	Control	1	10	10	10	10	10	10	io	(0	<u> </u>
New DO		2	10	10					6	10	
New DO	······	1 3	10	10	 		10				
New DO	········		10								†
New phi	New DO	XXX		7 4				74			<u> </u>
Temp XXX Old DO XXX XXX AXX AXX AXX AXX AXX A											†
Odd DO					22.4						<u> </u>
Odd pH			+ 42 - 2 - 1 - 2		73			160			<u> </u>
Conc: 0.25g/L 2 10 10 10 10 10 10 10 10 10 10 10 10 10					19 0			183			ļ
		1	Gi	 	10	 		10			
New DO	--				 				<u> </u>		
New DO				<u> </u>		 					
New DO	·			· · · · · · · · · · · · · · · · · · ·	 	 		 	a	+ 🖑 -	<u> </u>
New pH	New DO		4		77	ļ			70	·	
Temp XXX		· · · · · · · · · · · · · · · · · · ·			1						
Old DO										+	
Old ph		+	12.02		100			741	00.	\	
Conc: 1.5g/L 2 (0 10 10 10 10 10 10 10 10 10 10 10 10 10			<u> </u>		 ነ ' ' ' ' ' '				74	17.4	
		 	 					1 1	1.1	1 613	
New DO		<u> </u>			<u> </u>		 	12		<u> </u>	
New DO		 			 				a		
New pH			1	+				1 .	₹	1-4-	
New pH	New DO	<u> </u>							73	XXX	
Temp			**************************************		74		L		79		
Old DO			22		228	23.0		1353	779	 	
Old pH		-			7 1			(-1	54		
Conc: 2.5g/L 2 1) 10 10 10 10 10 10 10	Old pH							75	निप		
	Conc: 2.5g/L	1	6i						-	7	
New DO		2			ि।			1 1		1	
New DO		3		 	(0	10	in		8		
New DO		4	1		10	10		10	8	6	
New pH	New DO	XXX	7.5	7.6	8.0	7.6		79		XXX	******
Temp	New pH	XXX	7.9	7.8		7.3	7.8	8.0	7.9	XXX	
Old DO	Гетр	XXX	233						रेर ०	XXX	
Old pH	Old DO	XXX	XXX		6,6		6.3	6.5	6.0	61	
Conc: 3.5g/L 2 0 10 0 13 13 0 9 7 New DO	Old pH	XXX	XXX	7.7	7,6		7.7			7,4	
New DO	Conc:	1	10	10	10	10	ĺυ	10	₹	0	
New DO	Conc: 3.5g/L	2	(d)	10	10	10	10	\u0	8	7	
New DO		3	U			10	10	10	٩	7	
New pH		4	19		10		is				
Temp	lew DO	XXX		7.6	8,0		7.7	7,9	7.9	XXX	
Old DO	lew pH	XXX			8.0					XXX	
Old pH		XXX	_23.3		22.5			723		XXX	
Old pH				6.5	2.0	6.9	E, 2			6,4	
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		XXX		7.7	1.47					75]
New DO	Conc: 8.5g/L										
New DO XXX 7.6 7.6 7.3 7.7 — XXX New pH XXX 7.9 7.1 19 7.3 7.8 — — XXX Temp XXX D3.3 23.5 22.3 23.5 21.5 — — XXX Old DO XXX XXX XXX 7.6 6 7.7 7.7 7.1 — — Feeding A.M. XXX A.M. XXX A.M. XXX A.M. XXX XXX				₹			0				
New DO		3		7	2		i				
New pH									Ö]
Temp XXX 3,3 23.5 22.3 23.5 21.5 — XXX Old DO XXX XXX 6.7 1,2 7.1 6.3 6.9 — — Old pH XXX XXX 7.6 1.6 7.7 7.7 7.1 — — Feeding A.M. XXX A.W.		XXX			8-1					XXX	
Old DO	lew pH			• • •	17					XXX	
Old pH XXX XXX 7.6 6 7.7 <td></td> <td></td> <td></td> <td></td> <td>22.3</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td>					22.3				<u> </u>		
Feeding A.M. XXX WE OR OF OF WE WXX XXX						7.1		69			
	old pH	XXX				7.7					
				int				ut			
1P.M. WK W 9 OF G WK WK XXX		P.M.	ur	w.	ၯ	CP	Ó	nh I	wa	XXX	

Facility

Analytical Laboratories

Test ID Date

QC February 201 2/28/2017

IWC Conc.

QC February 2017

Analyst Species

Will Reynolds

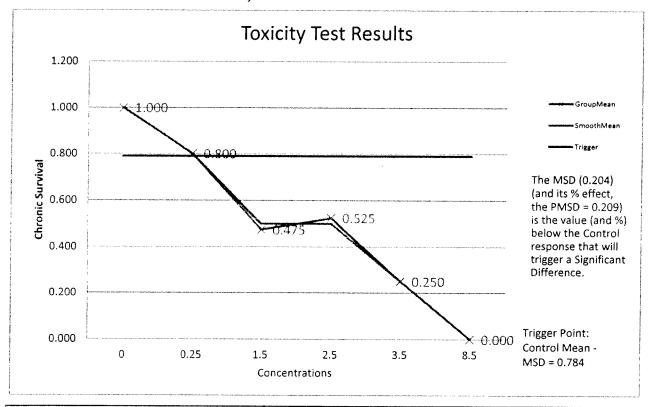
Species

Pimephales promelas (fathead minnow)

Test Type Chronic Survival

Input

Number of Organis	sms Expose	d or Counted					
			Concer	itrations			
Replicate	<u>0</u>	<u>0.25</u>	<u>1.5</u>	<u>2.5</u>	<u>3.5</u>	<u>8.5</u>	
1	10	10	10	10	10	10	
2	10	10	10	10	10	10	
3	10	10	10	10	10	10	
4	10	10	10	10	10	10	


Number of Organisms Surviving or Responding

	Concentrations								
Replicate	<u>0</u>	<u>0.25</u>	<u>1.5</u>	<u>2.5</u>	<u>3.5</u>	<u>8.5</u>			
1	10	8	4	2	0	0			
2	10	8	4	6	2	0			
3	10	8	4	7	7	0			
4	10	8	7	6	1	٥			

Total Organisms	40	40	40	40	40	40	
Total Responding	40	32	19	21	10	0	
% Responding	100.0%	80.0%	47.5%	52.5%	25.0%	0.0%	
Output							

Statistical Data	Conc.	Mean	Stdev	CV	Dunnett test
	0	1.412	0.000	0.000	
Statistics are based or	0.25	1.107	0.000	0.000	NS
the transformed data	1.5	0.761	0.153	0.201	Y
used for endpoint	2.5	0.807	0.234	0.290	Υ
calculations	3.5	0.484	0.360	0.745	Y
	8.5				Υ
NOEC	LOEC		IC25	95% Conf	idence Intervals
0.25	1.5		0.40	0.37	0.52
TST	Calculated t	-value	Table t-va	lue	Relative % Effect at IWC
MSD	PMSD				
0.204	20.9%				
0.204	ZU.3 /0				

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

BENCH SHEET FOR FATHEAD MINNOW INITIAL WEIGHT DATA EPA METHOD 1000.0

LAB ID#: Feb 2017Test Start Date: 2-21-17Drying Temp: 100°cWeighing Date: 1-12-17Test End Date: 2-18-17Drying Time: 20 kg s

Location/Client: QC

	Rep No.	Weight of Boat (g)	Boat and Dry Larvae (g)	Dry Weight of Larvae (g)		Mean Dry Weight of Larvae (mg)	Average
	7-1	1,2870	1,2883	.0013	10	.13	O. ilma
Initial	12	1,2918	1.2928	.0010	10	.io	
iiiitiai	13	1.2905	1.2918	.0013	10	. 13	
	14	1.2916	1.2925	. 0009	ιo	, ०१	,

Reviewed By: 50

Fathead Minnow QC Weight Data

Analyst: C/CR Test Month/Year: \(\frac{100}{100}\) Drying Temp: \(\frac{100}{100}\)

Weighing Date: 3117 Drying Time: 24hrs

,		·		·		
		Boat and Dry	Dry		Mean Dry Weight of	
Rep		Larvae			Larvae	
No.	Boat (g)	(g)	Larvae (g)	Larvae	(mg)	AvgInit.= Avg. Wt. Gain (mg)
1	1.2807	1,2850	.0043	10	,43	
2	1.2773	1.2824	1200,		,51 (144 mg-0/11 mg = 0.33 mg
	 		,0043		.43	J
7	1.2698	1.2738	,0040		.40	
x 5	<u></u>				. 25	
X6	1,2649	1.2685	.0036		.36	0.36mg-0.11 mg= 0.25mg
x 7	1.765	1,3008	.0043		.५३	
x 8	1.2887	1,2927	,0040		۰۲۰	
χ٩	1.2910	1.2924	μ,60.		۲۱.	
x (°	1,2963	08P C.)	.00,7		.(7	0.21 mg - 0.11 mg = 0.10 mg
χιι	i i		0Ç00.		٥6`	J J J
X 12	1,2866	1.2898	4ξ ∞,		. ड्रें	
		1.2957	1100.		, 11	
		1.3009	.0031		.31	0.24mg-0.11mg=0.13mg
x 15	1,2908	(,2937	.0029		. PG .	3 3
ХÌL	1.>865	1,2890	,00 25		.25	
x 17	1.2925	1,2925	<i>0</i> 8 00,		<i>6</i> 3,	
x 18	1.2983	1.2994	.0011		. 11	0.12mg - 0.11 mg = 0.01 mg
x 19	1.7935	1,2968	EE00,		, 33	<i>y</i> 3
V 20	1,2897	1,2900	5000		3ه .	
×21			<i>00</i> 00.		<i>0</i> 0,	
x Э2		_	0000		.00	
EG X		-	.000		00.	
x 24		_	00003,	V	, 00	
	No. 1 3 4 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8	No. Boat (g) 1 1.2607 2 1.2773 3 1.2758 4 1.2698 X 5 1.2947 X 6 1.2649 X 7 1.2963 X 10 1.2963 X 11 1.2975 X 12 1.2978 X 13 1.2978 X 14 1.2978 X 15 1.2908 X 17 1.2925 X 18 1.2983 X 19 1.2983 X 19 1.2983 X 10 1.2983 X 10 1.2983 X 11 1.2983 X 12 1.2983 X 13 1.2983 X 14 1.2983 X 15 1.2983 X 16 1.2983 X 17 1.2925 X 18 1.2983 X 19 1.2983 X 20 1.2897 X 21 — X 22 — X 23 —	Rep No. Boat (g) 1 1.2607 1.2850 2 1.2773 1.2824 3 1.2758 1.2801 4 1.2698 1.2738 5 1.2649 1.2685 7 1.265 1.2685 7 1.265 1.2685 7 1.263 1.2927 7 1.2925 1.2927 7 1.2925 1.2925 7 1.2928 1.2935 7 1.2928 1.2935 7 1.2928 1.2935 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2928 1.2928 7 1.2938 1.2944 7 1.2938 1.2944 7 1.2938 1.2948 7 1.2938 1.2948 7 1.2938 1.2968	Rep No. Boat (g) Dry Larvae Weight of Larvae (g)	Rep Weight of No. Boat (g)	Rep No. Boat (g) No. Boat (g) No. Of Larvae (g) No. of Larvae (g) No. of Larvae (mg) No. of Larvae (m

Reviewed By: 15

Facility

IWC Conc.

Analytical Laboratories

Test ID (

2/28/2017

QC February 2017

Analyst

Will Reynolds

Species Pimephales promelas (fathead minnow)

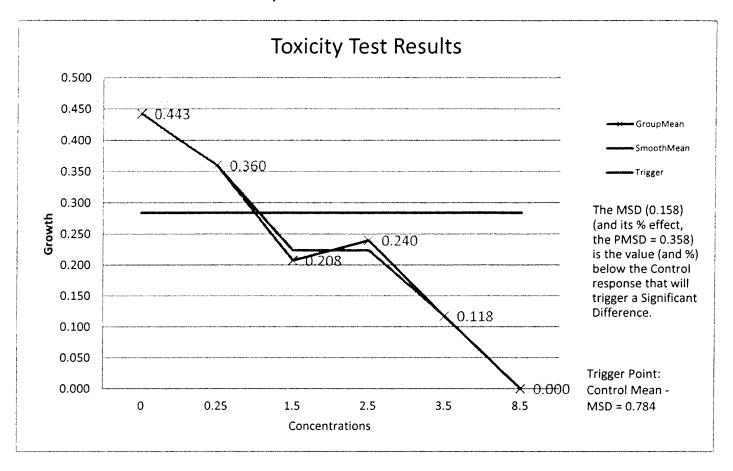
Test Type Growth

Input

Date

			Concer	itrations		
Replicate	<u>o</u>	<u>0.25</u>	<u>1.5</u>	<u>2.5</u>	<u>3.5</u>	<u>8.5</u>
1	0.43	0.25	0.14	0.11	0	0
2	0.51	0.36	0.17	0.31	0.11	0
3	0.43	0.43	0.2	0.29	0.33	0
4	0.4	0.4	0.32	0.25	0.03	0

TST	Calculated t	-value	Table t-va	lue	Relative % l	Effect at IWC
0.25	1.5		0.44	0.17	0.83	
NOEC	LOEC		IC25	95% Conf	idence Interv	als
	8.5	0.000				Y
	3.5	0.118	0.149	1.269		Y
	2.5	0.240	0.090	0.376		Y
	1.5	0.208	0.079	0.380		Υ
	0.25	0.360	0.079	0.219		NS
	0	0.443	0.047	0.107		
Statistical Data	Conc.	Mean	Stdev	CV		Dunnett test
Output						
Stdev	0.047	0.079	0.079	0.090	0.149	0.000
Mean	0.443	0.360	0.208	0.240	0.118	0.000


MSD

0.158

PMSD

35.8%

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

BENCH SHEET FOR S. capicornutum ALGAL QC GROWTH TEST. EPA METHOD 1003.0

Test Month/Year Final Report Review: 50

Test Start Date/Time: 2/28/17, 1305

Test Stop Date/Time: 3/4/17, 1600

Daily pH and Temp.

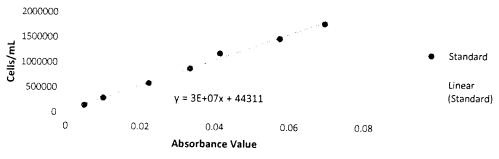
CONCENTRATION	D	Day 0		Day 1		Day 2		Day 3		Day 4	Comments
	рН	Temp	pН	Temp	pН	Temp	pН	Temp	рН	Temp	
Control	8.1	23.7	9.8	24.4	10.1	23.5	10.7	24.5	10,3	_	
0.50 g/L	8.3	24.5	9.9	24.1	10,4	24.6	10.6	24.2	10.6	25.5	
1.5 g/L	8.3	24.1	9.8	24.7	10.4	24.9	10.6	25.3	10.6	25.2	
5.5 g/L	8-2	24.0	9.5	24.2	9,9	24.8	10.2	25.0	10.1	25.8	
8.5 g/L	8-1	24.4	9.6	24.2	9.7	15.2	9.8	24-2	9.7	24.9	
10 g/L	8.0	24.7	9.5	24.1	9.7	25.1	9.9	24.2	9.8	25.9	

BENCH SHEET FOR S. capicornutum ALGAL QC GROWTH TEST

EPA TEST METHOD 1003.0

TEST MONTH/YEAR# (-6, 2017 ANALYST: ~60 FINAL REPORT REVIEW: 30 TEST START DATE/TIME: 2/28/17, 1300
TEST END DATE/TIME: 3/4/17, 1600

Initial Algae Count (cells/mL)


1	 	, 		
Random Sample #1	Random Sample #2	Random Sample #3	Random Sample #4	Initial Average
Absorbance Value: •015	Absorbance Value: - 015	Absorbance Value: . 01H	Absorbance Value: -015	Absorbance Value: Cells/mL: 315

Final Algae Count (cells/mL)

CONCENTRATION	7	Rep. 2	Rep. 3	Rep. 4	Average
CONTROL	Absorbance Value: , e sq	Absorbance Value: 062	Absorbance Value: . os6	Absorbance Value: . 05%	Absorbance Value: 059 Cells/mL:
0.5	Absorbance Value: 067	Absorbance Value: 053	Absorbance Value: 05%	Absorbance Value: . 053	Absorbance Value: Cells/mL: 058
1.5	Absorbance Value:, 055 (, 69	Absorbance Value: . 0 66	Absorbance Value: .057	Absorbance Value: .358	Absorbance Value:
5.5	Absorbance Value: .067 2.05	Absorbance Value: . osq 1.8 i	Absorbance Value: .057	Absorbance Value: いい	Absorbance Value
8.5		Absorbance Value: . 944	Value: -040	Absorbance	Absorbance Value: 043 Cells/mL:
	1	Absorbance Value: . 047 1.45	Absorbance Value: 046	Absorbance Value: - 3ዛ녁 1. 36	Absorbance Value: all

^{*}Absorbance values (AV) obtained from Spectronic 601 spectrophotometer are used to determine cells/mL based on a standardized linear relationship ((3x10^7)(AV) + 44311).

Selenastrum capricornutum Conversion Chart

Facility Test ID

Analytical Laboratories

Date IWC Conc. QC February 2017 1/31/2017 2/34

Analyst

Will Reynolds

Selenastrum capricornutum (green algae) **Species**

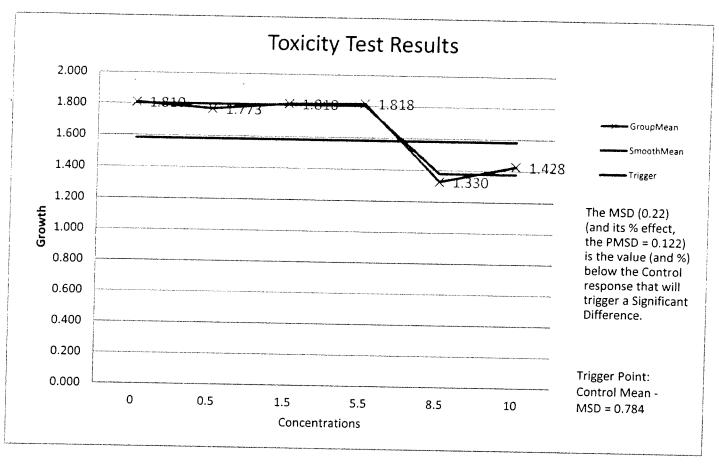
Test Type Growth

In	put
----	-----

			Concer	ntrations		
Replicate	<u>0</u>	<u>0.5</u>	<u>1.5</u>	<u>5.5</u>	<u>8.5</u>	<u>10</u>
1	1.81	2.05	1.69	2.05	1.39	1.48
2	1.9	1.63	2.02	1.81	1.36	1.45
3	1.72	1.78	1.75	1.75	1.24	1.42
4	1.81	1.63	1.78	1.66	1.33	1.36

Mean	1.810	1.773	1.810	1.818	1.330	1,428
Stdev	0.073	0.198	0.145	0.167	0.065	0.051

Output


Statistical Data	Conc.	Mean	Stdev	CV	Steel test
	0	1.810	0.073	0.041	Oteer test
	0.5	1.773	0.198	0.112	NS
	1.5	1.810	0.145	0.080	NS
	5.5	1.818	0.167	0.092	NS
	8.5	1.330	0.065	0.049	Y
	10	1.428	0.051	0.036	Y

NOEC	LOEC	IC25	95% Confidence Intervals	
5.5	8.5	>10	N/A N/A	

TST	Calculated t-value	Table t-value	Relative % Effect at IWC
			70 = 1100t at 1100

MSD	PMSD	
0.220	12.2%	

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

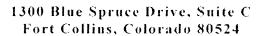
The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax: 970/484-2514

ORGANISM HISTORY

DATE:	2/20/2017	
SPECIES:	Pimephales prometas	
AGE:	N/A	
LIFE STAGE:	Embryo	
HATCH DATE:	2/20/2017	
BEGAN FEEDING:	N/A	Advisor
FOOD;	N/A	The state of the s
Water Chemistry Record:	Current	Range
TEMPERATURI	E: 24°C	
SALINITY/CONDUCTIVITY	í: <u></u>	
TOTAL HARDNESS (as CaCO ₃):	
TOTAL ALKALINITY (as CaCO;): <u>85 mg/l</u>	4 -
pH	f: <u>8.18</u>	
Comments:		
		(
	So till	
	Facility Supervisor	


1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

ORGANISM HISTORY

DATE:	2:27:		
SPECIES:	Cerio	odaphnia dubia	
AGE:	< 24	hour	
LIFE STAGE:	Neon	ate	
HATCH DATE:	2/27/	2017	
BEGAN FEEDING:	Imme	diately	
POOD:	YTC,	Raphidocelis subcapitata*	
Water Chemistry Record:		Current	Range
TEMPERATU	RE:	24°C	
SALINITY/CONDUCTIV	ITY:		
TOTAL HARDNESS (as CaC	'O;):	90 mg/l	
TOTAL ALKALINITY (as CaC	(O ₃);	65 mg 1	4.0
	рН:	8.27	
Comments: * Formerly known as <i>P</i> .	suedokirsc	hneriella subcapitata and S	elenastrum capricornutum
		Jan 19/1/2	
**************************************	***************************************	Facility Supervisor	

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

Algae Preparation History

DATE:	2/27/2017
SPECIES:	Raphidocelis subcapitata*
INOCULATION DATE:	2/7/2017
HARVEST DATE:	2/13/2017
CONCENTRATION DATE:	2/15/2017
CELL COUNT (/ml):	3.0 x 10 ² cells ml

Comments:

- * Formerly known as Psuedokirschneriella subcapitata and Selenastrum capricormitum
- ** All concentrated algae diluted to proper cell count with reconstituted moderately hard DI water.

Supervisor

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel:970/484-5091 Fax:970/484-2514

YTC TOTAL SOLIDS MEASUREMENT

(Method from EPA/505/8-89-002a)

YTC Process Date: 2/22/2017: Best if used by 5/31/2017

Average Total Solids: 1770 mg/l

Ingredient Lot Numbers

Pines International® Wheat Grass: COCDW12S50: Zeigler Finfish Starter #1 (1.ot 10.19/2016); Fleischmanns Yeast: G-3

Analyzed Metals	Report Limits	Results (mg/L)
Aluminum	0.03	0.08
Arsenic	0.001	11
Cadmium	0.001	11
Chromium	0.005	U
Copper	0.05	0.033
Iron	0.02	0.24
Lead	0.001	U
Mercury	0.001	U
Nickel	0.005	I.
Silver	0.001	Li Li
Zine	0.01	0.14

Compounds	Report Limits	Results
Aldrin		(ug/L)
alpha-BHC	0.5	U
beta-BHC	0.5	U
delta-BHC	0.5	U
	0.5	U
gamma-BHC (Lindane) alpha-Chlordane	0.5	U
······································	0.5	U
gamma-Chlordane 4,4' – DDD	0.5	U
4.4' – DDE	0.5	U
	0.5	U
4,4' -DDT	0.5	U
Dieldrin	0.5	l t
Endosulfan I	0.5	Į t
Endosulfan II	0.5	U
Endosulfan sulfate	0.5	U
Endrin	0.5	U
Endrin aldehyde	0.5	U
Endrin ketone	0.5	U
Heptachlor	0.8	U
Heptachlor epoxide	0.5	U
Methozychlor	0.5	U
Chlordane (technical)	5.0	l:
Toxaphene	25	U
Aroclor-1016	5.0	U
Aroclor-1221	5.0	U
Aroclor-1232	5.0	Ü
Aroclor-1242	5.0	U
Aroclor-1248	5.0	Ü
Aroclor-1254	5.0	Ü
Aroclor-1260	5.0	U
Aroclor-1262	5.0	U U
Aroclor-1268	5,0	Ü

U - Indicates compound was analyzed for but not detected.

^{*}Testing performed by Energy Labs, Billings, Montana