
BIOMONITORING REPORT

FOR

CITY OF CALDWELL WWTP

LAB #1702794 PERMIT # ID0021504

JANUARY 2017

PREPARED BY:

ANALYTICAL LABORATORIES, INC. 1802 N. 33RD STREET BOISE, ID 83703 (208)342-5515

SUMMARY OF ANALYSES CITY OF CALDWELL WWTP

JANUARY 2017

The results for the Ceriodaphnia dubia reproduction study:

NOEC: N/A LOEC: N/A IC25: N/A TUc: N/A

* Control replicates did not meet minimum reproduction acceptability criteria outlined in <u>Test Design/Standard Conditions Method 1002.0</u>, line 16, and therefore an additional test of Method 1002.0 must be scheduled.

The results for the Ceriodaphnia dubia survival study:

NOEC: 100% LOEC: >100% IC25: >100% TUc: 1

No chronic toxicity was detected in EPA test method 1002.0 within the survival data.

Introduction

Toxicity analysis consisting of chronic bioassay EPA Test Method 1002.0 was conducted on effluent samples collected by the City of Caldwell WWTP. Samples were collected January 24, January 26, and January 27, 2017, as 24-hour effluent composites. Once collected, samples were sent immediately to Analytical Laboratories, Inc. for analyses. Effluent composites were collected in one-gallon jugs for solution renewal water and in one liter cubitainers for water chemistries testing. Samples were chilled during transport by the addition of cold packs to the coolers. Method 1002.0, utilizing the freshwater flea *Ceriodaphnia dubia*, was conducted on January 24 2017 and completed on January 31, 2017. Testing was conducted according to Short-Term Methods for Estimating the Chronic Toxicity of Effluents and receiving Waters to Freshwater Organisms, Fourth Edition October 2002 EPA-821-R-02-013 and Standard Methods for the Examination of Water and Wastewater, 19th Edition.

Methods and Materials

Test methods are designed to estimate and measure chronic toxicity of whole and partial effluents to the model freshwater aquatic organisms, freshwater flea *Ceriodaphnia dubia* in a 7-day static renewal test. Test water was collected as 24-hour effluent composites using mechanical sampling equipment. Samples were then transported to the laboratory for analyses. Effluent was used; whole or combined, with artificially prepared dilution water to prepare dilution series. Dilution water was prepared (20% v/v Perrier Mineral Water in deionized water) to produce a moderately hard dilution of control water. Water was prepared in bulk 24 hours prior to analyses and was aerated continuously to increase dissolved oxygen.

For Test Method 1002.0, *Ceriodaphnia dubia* neonates were produced in house from brood organisms that produce 8 or more young in their 3rd or subsequent broods. Brood animals are fed daily and transferred to new culture media at a minimum of 3 times a week. Survival and reproduction records are maintained to ensure healthy test organisms. Original mass cultures of organisms were started from brood organisms obtained from Aquatic Biosystems in Fort Collins, Colorado. Neonates less than 24 hours old were selected randomly from a known parentage, inspected, and arranged in five sample dilutions and a control with ten replicates to each. Analyses at a static renewal were performed over the next seven consecutive days. Data obtained was used to determine NOEC, LOEC, IC25 and TU_C for survival and reproduction (see Appendix I - Definition of Terms).

Test Design/Standard Conditions Method 1002.0

1. Test Type - static renewal (daily)

Collection #1 - Renewal Day 1 and 2 - January 24, 2017

Collection #2 - Renewal Day 3 and 4 - January 26, 2017

Collection #3 - Renewal Day 5 and 6 - January 27, 2017

Day 7 - Final counts and statistical review

2. Temperature - 25 +/- 1 degree Celsius.

3. Light Quality - Environmental Chamber Fisher/11-67966

4. Light Intensity - Incubation chamber (as above)

5. Photoperiod - 16 hours light; 8 hours dark

6. Test Chamber - 30 ml anchor-hocking

7. Renewal - All dilutions daily

8. Age - Neonates/less than 24 hours

9. Organisms per chamber - One

10. Replicates - Ten chambers/control and each dilution

11. Feeding - 0.1 ml YTC; 0.1 ml Selenastrum capricornutum

suspension - once daily

12. Dilution water - 20% v/v Perrier Mineral Water in deionized water

13. Concentrations used - 100%, 69.5%, 39%, 19.5%, 9.75 % and Control

14. Duration - Seven days

15. Endpoint - Survival/reproduction

16. Acceptability - 80% or greater of control survival / 60% of control produce

3rd brood / Average of 15 young/surviving female

17. Source of organisms - In house

Interpretation - Statistical Review

Statistical endpoint of data from Method 1002.0 was determined by the use of WET Analysis Spreadsheet v1.6.1. The EPA uses this spreadsheet to analyze valid WET test data to obtain acute and chronic test endpoints identified in EPA's WET test methods under the NPDES program. The test analyses performed by this statistical software compare the raw data of test and control concentrations and determine if there are any statistically significant differences. The software infers normality and variance from the raw data, and chooses the appropriate analytical methodology. This minimizes the effect that extraneous circumstances may have on the NOEC, LOEC, and IC25. TUc (Chronic Toxicity Units) values are calculated by the following formulas:

For survival endpoints: 100/NOEC For all other test endpoints: 100/IC25

Results - Method 1002.0

During EPA Method 1002.0, survival and reproduction test using *Ceriodaphnia dubia*, survival and reproduction values from specific dilutions of collected effluent are measured and compared to values obtained from control individuals.

Analyses of data for EPA method 1002.0 *Ceriodapnia dubia* Survival test indicated no chronic toxicity at any concentration. However, control replicates did not meet minimum reproduction acceptability criteria outlined in <u>Test Design/Standard Conditions Method 1002.0</u>, line 16, and therefore an additional test of Method 1002.0 must be scheduled.

Endpoints Determined - Method 1002.0

		NOEC	<u>LOEC</u>	<u>IC25</u>
Ceriodaphnia dubia	Survival	100%	>100%	>100%
	Reproduction	N/A	N/A	N/A

The mortality was less than twenty percent (<20%) in controls. However, an average of at least 15 young per surviving female within three broods was not established. Reproduction test was declared invalid.

Test Quality Control

Quality control practices for effluent toxicity tests include certain precautions at each of the following steps:

- Effluent sampling and handling. Sampling containers prepared as per section 7 of
 <u>Methods for Measuring and Chronic Toxicity of Effluent to Freshwater and Marine
 Organisms</u> were provided to client. Insulated transportation containers with cooling
 packs to chill samples were provided.
- Condition of test organisms. Test organisms for Method 1000.0, and 1003.0 are purchased from Aquatic Biosystems, Inc. in Fort Collins, Colorado, a state and federally approved aquatic test organism supplier. Test organisms for Method 1002.0 were cultured in house.
- 3. <u>Conditions of test equipment</u>. All test equipment used is maintained according to manufacturer's specifications. Equipment such as balances, thermometers, etc. is calibrated annually by outside sources and certificates are maintained. All equipment maintenance and calibrations are recorded and archived.
- 4. <u>Test conditions</u>. Only test methods directly from EPA references or methodologies provided are used. Any deviations or alterations from these procedures are documented and approved prior to use.
- 5. Reference toxicants. Reference toxicants are used for Methods 1000.0, 1002.0 and 1003.0. Sodium chloride is made up in dilution control water at prescribed concentrations and is used to determine toxicity for each method. Reference toxicants are run once per month to ensure consistency in test methodology. Quality control data is provided and a graphical representation over time is attached.
- 6. <u>Record Keeping</u>. All raw data, data evaluation, and statistical analysis are included in report to client. Original hardcopies along with all test records are maintained at laboratory for client or future reference.

LIST OF TABLES AND APPENDICES

Table I - Ceriodaphnia dubia Survival and Reproduction Summary

Method 1002.0

Table II - Ceriodaphnia dubia Water Renewal Chemistries - Old pH

and Dissolved Oxygen

Table III - Effluent Water Composites - Chemistries Summary

Appendix I - Definition of Terms

Appendix II - Ceriodaphnia dubia Raw Data

Appendix III - Effluent Samples Chain of Custodies & Chemistries

Reports

Appendix IV - NPDES WETT Permit Requirements

Appendix V - Organisms - Transfer Sheets

Appendix VI - Literature Cited

Appendix VII - Reference Toxicants Data and Graphs

CITY OF CALDWELL WWTP LAB ID # 1702794 JANUARY 2017

METHOD 1002.0

Concentration	Initial Count	48-hour Count	96-hour Count	Final Count	Percent Survival	Average Young/ Remaining Female
Control	10	10	10	10	100%	2.2
9.75%	10	10	10	8	80%	6.3
19.5%	10	10	10	9	90%	6.3
39%	10	8	8	8	80%	21.3
69.5%	10	10	10	9	90%	
100%	10	10	10	10	100%	22.7 28.7

Table I: Ceriodaphnia dubia Survival And Reproduction Summary

Concentration	Coı	ntrol	9.7	5%	19.	5%	39	1%	69.	5%	100	0%
Day	DO	pН	DO	pН	DO	pН	DO	рН	DO.	рН	DO	pН
1	7.3	7.6	7.3	7.9	7.1	7.9	7.2	8.0	7.3	8.1	7.3	8.2
2	7.4	7.5	7.4	7.9	7.4	8.0	7.5	8.1	7.5	8.2	7.7	8.3
3	7.4	7.8	7.4	7.9	7.5	8.0	7.6	8.1	7.7	8.2	7.8	8.3
4	7.4	8.1	7.4	8.2	7.5	8.2	7.5	8.3	7.6	8.3	7.6	8.4
5	7.8	8.0	7.8	8.1	7.8	8.2	7.8	8.3	7.9	8.3	8.0	8.4
6	7.8	7.7	7.8	7.9	7.8	8.0	8.1	8.2	8.1	8.2	8.1	8.3
Table II. W.	8.3	8.1	8.1	8.0	8.3	8.1	8.5	8.2	8.5	8.2	8.5	8.3

Table II: Water Chemistries, Daily Renewals – Old Water pH & Dissolved Oxygen Values

CITY OF CALDWELL WWTP LAB ID # 1702794 JANUARY 2017

Concentration	CHLORINE RESIDUAL	ALKALINITY	CONDUCTIVITY	HARDNESS	AMMONIA	рН
	(mg/L)	(mg/L)	(umhos)	(mg/L)	(mg/L)	S.U.
1/24/2017	< 0.10	181	697	150	<0.04	7.4
1/26/2017	< 0.10	189	724	155	0.53	7.3
1/27/2017	<0.10	179	767	157	0.89	7.4

Table III: Effluent Chemistries Summary

Definition of Terms

- 1. <u>Safe Concentration</u>. The highest concentrations of toxicant that will permit normal propagation of fish and other aquatic life in receiving waters, biologically defined rather than statistically.
- NOEC (No-Observed Effect Concentration) The highest concentration of toxicant in which the values for the observed parameters (survival, growth, reproduction) in which there is no statistically significant difference from controls and no observable effect on organism behavior or health.
- 3. <u>LOEC</u> (Lowest-Observed Effect Concentration) The lowest concentration of toxicant in which the values for the observed parameters (survival, growth, reproduction) do have a statistical significant difference from controls. At this concentration there is evidence of toxicity.
- 4. TUc (chronic toxicity units) –

For survival endpoints: 100/NOEC

For all other test endpoints: 100/IC25

5. <u>IC25</u> (Inhibition concentration - 25%) – Concentration where at least 25% of the organisms have some statistically significant effect.

Taken from: <u>Short-Term methods for Estimating the Chronic Toxicity of Effluents</u> and receiving Waters to Freshwater Organisms, Fourth Edition. October 2002. <u>EPA-821-R-02-013</u>.

BENCH SHEET FOR CERIODAPHNIA SURVIVAL/REPRODUCTION TEST. EPA Method 1002.0 LAB ID# 1702794 Analyst: WQ/GP Final Report Review: 50 Discharged: Effluent Test Start Date/Time: 1/24/17, 1200 Description: City of Caldwell wwip
Temp Received: Day 1: 970 Day 2: 6 Test Stop Date/Time: 1/31/17, 1300 97.c Day 2: 6.3°c Day 3: 3.1 Renewal Lab Numbers: Day 0 & 1: 3794 Day 2 & 3: 3241 Day 4, 5 & 6: 3406 New New Daily Young D.O. Conc pН D.O. Control Hq blO Temp Day-Lab # 1 2 3 4 5 6 7 8 9 10 XXX XXX XXX XXX XXX XXX 0-/ 1.5 18 XXX XXX 1-23,4 7.9 7.7 7.3 7.6 2-23.9 7.9 7.7 7.4 7.5 3-22.8 7.8 7.9 7.4 7.8 23.3 4-1/1 1/1 13 7.8 8.0 7.4 8.1 22.2 5-8.3 7.9 7.8 0.8 6-225 2/5/2/1 8 7.9 7-8. GG 1 8.3 8.1 O Total 0 0 0 0 10 22 New New Old Daily Young 9,750% D.O, рΗ D.O. Conc Old pH Temp Day-Lab # 2 3 4 5 7 6 8 10 XXX XXX XXX XXX XXX XXX 0-7.5 ገ.8 XXX 23.4 XXX 1-3.8 7.3 2-7.9 23,8 7.8 7.8 7.4 7.9 22.8 3-7.8 7.4 7.9 13.1 4-1/8 1/6 1/6 1/5 25 79 7.9 7.4 8.2 5-22.6 0 8.0 83 7.8 6-8.1 <u> 2</u>32 214 2/16 20 8.3 8.0 78 7.9 33.8 1/1 3/4 5 8.1 8.0 Total 0 0 0 10 25 New New Old 19.5% Daily Young D.O. Conc рН D.O. Old pH Temp Day-Lab # 1 2 3 4 5 6 7 8 9 10 **XXX** XXX XXX XXX XXX XXX 0-8.5 XXX XXX 235 1-8.0 7.8 7.1 7.9 2-23.6 8.0 7.8 8.0 7.4 23.0 3-8.1 77 23.1 7,5 8.0 4-1/2 1/8 8.0 10 7.8 7.5 8.2 22.9 5-2 1.8 8.2 า.8 22.5 6-1/26/2 8/11 30 8.3 1.8 8.0 7-7.66 1/1 2/14 15 8.3 8.1 Total O 2

0

21

57

PAGE \ OF \

PAGE > OF > BENCH SHEET FOR CERIODAPHNIA SURVIVAL/REPRODUCTION TEST. EPA Method 1002.0 LAB ID# 1702794 Analyst: 4/40 Final Report Review: 5 C Discharged: To Huent Test Start Date/Time: \/24(17, 1200 Description: City of Caldwell www TP Test Stop Date/Time: 1/31/17 , 1300 Temp Received: Day 1: 9.7°C Day 2: 6.3°C Day 3: 3.1°C Renewal Lab Numbers: Day 0 & 1: 2794 Day 2 & 3: 324/ Day 4, 5 & 6: 3406 New New Old Daily Young D.O. Hq D.O. Old pH Temp 39% Conc 2 7 XXX Dav-Lab # 3 4 5 6 8 9 10 XXX XXX XXX **XXX** XXX 8.1 DR.6 0-XXX XXX 0 1-23.8 8.4 7.8 7.2 8.0 7.6 2-8.2 7.5 8.1 23.0 8.4 7.6 7.6 8.1 3-23.0 4-1/6 115 1/4 8.3 7.6 23.0 7.5 22 8.3 5-1/6 6 8.5 83 8. CG 1/12/12 214 7.8 6-8.1 8,2 22.6 2/19 7-1/3 2/22 3/18 8.5 8.2 133 0 35 Total 36 New New Old Daily Young D.O. D.O. Hq blO Temp Ηq Conc 695% 1 2 5 Day-Lab # 3 4 6 7 8 9 XXX **XXX** XXX XXX XXX XXX 10 \checkmark 23,6 0-6 XXX XXX 8.1 7.3 1-2-8.6 7.6 23.0 7.5 8.2 8.8 7.5 8.2 3-23.1 7.7 3727 1/4 1/5 8 4-7.5 7.6 8.3 23.0 72.9 ٧a 5-7.6 **K.**3 14 94^{cp}84 7/14 210 22.9 6-8.2 2/4/3/22 7-3/22 D 413 3/18 8.5 8.2 41 0 20 Total 38 204 New New Old Daily Young D.O. pН D.O. Old pH Temp Conc 100 % Day-Lab # 2 4 5 9 10 **XXX** XXX XXX XXX XXX XXX J3, 8 **/** XXX 0-XXX 7.6 8.2 23,5 1-7.3 7.5 8.3 2-7.7 23.9 7.8 8.3 3-9.1 74 23.4 1/3 1/7 1/2 1/5 1/6 1/7 30 7.6 8.4 23.0 4-7.4 5-**V** 1/5 84 23.1 11 83 76 0.8 VIO 2/10 2/13 2/14 2/13 2/13 212 P/10 23.1 6-116 S_{\perp} 8,3 2/10 3/16/3/21 3/18 3/17 3/19 3/19 7-130 8.5 8.3

38

18

39

15

287

30

Total

33

38

33

Facility

Date

Analytical Laboratories

Test ID

1702794 City of Caldwell WWTP

1/31/2017

Analyst

Will Reynolds

Species

Ceriodaphnia dubia (water flea) Test Type Chronic Survival

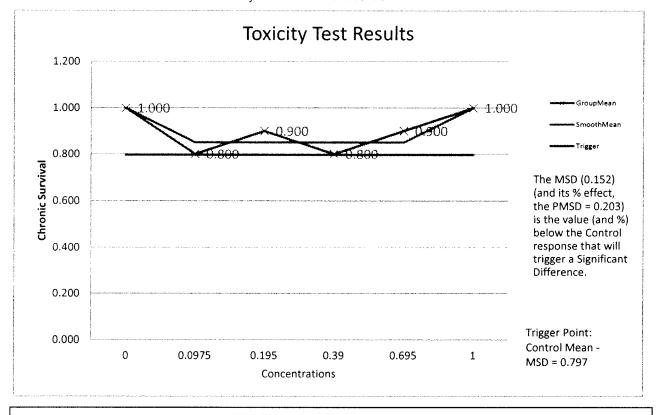
IWC Conc.

Input

Number of Organis	sms Expose	ed or Counted		·····			
			Concen	trations			
Replicate	<u>0</u>	0.0975	<u>0.195</u>	0.39	<u>0.695</u>	1	
1	1	1	1	1	1	1	
2	1	1	1	1	1	1	
3	1	1	1	1	1	1	
4	1	1	1	1	1	1	
5	1	1	1	1	1	1	
6	1	1	1	1	1	1	
7	1	1	1	1	1	1	
8	1	1	1	1	1	1	
9	1	1	1	1	1	1	
10	1	1	1	1	1	1	

Number of Organisms Surviving or Responding

			Concen	trations		
Replicate	<u>0</u>	0.0975	<u>0.195</u>	0.39	0.695	1
1	1	1	1	0	1	1
2	1	1	0	1	1	1
3	1	0	1	1	1	1
4	1	1	1	1	1	1
5	1	0	1	0	0	1
6	1	1	1	1	1	1
7	1	1	1	1	1	1
8	1	1	1	1	1	1
9	1	1	1	1	1	1
10	1	1	1	1	1	1


Total Organisms	10	10	10	10	10	10
Total Responding	10	8	9	8	9	10
% Responding	100.0%	80.0%	90.0%	80.0%	90.0%	100.0%
Output						

1	>1		>1	N/A	N/A	
NOEC	LOEC		IC25	95% Conf	idence Intervals	
	1	1.047	0.000	0.000		NS
calculations	0.695	0.995	0.166	0.166		NS
used for endpoint	0.39	0.942	0.221	0.234		NS
the transformed data	0.195	0.995	0.166	0.166		NS
Statistics are based or	0.0975	0.942	0.221	0.234		NS
	0	1.047	0.000	0.000		
Statistical Data	Conc.	Mean	Stdev	CV	Ste	eel test

тѕт	Calculated t-value	Table t-value	Relative % Effect at IWC

MSD	PMSD	
0.152	20.3%	

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Analytical Laboratories, Inc.

1804 N. 33rd Street Boise, Idaho 83703 Phone (208) 342-5515

Date Report Printed:

2/20/2017 9:53:39 AM

http://www.analyticallaboratories.com

These test results relate only to the items tested.

Laboratory Analysis Report

Sample Number: 1702794

Collected By: R. HAWKER

Submitted By: W. REYNOLDS

Source of Sample:

FE-C Biomonitoring Day 1

Time of Collection:

PO BOX 1179

8:00

Attn: SALVADOR ARREOLA

CALDWELL WASTEWATER

CALDWELL, ID 83607

1/24/2017

Date of Collection: Date Received:

1/24/2017

Report Date:

2/7/2017

PWS#:

Field Temp:

Temp Rovd in Lab:

9.7 °C

PWS Name:

Test Requested	MCL	Analysis Result	Units	MDL	Method	Date Completed	Analyst
Ceriodaphnia dubia	* *************************************	*			EPA 1002.0	2/2/2017	WR
Ammonia Direct (as N)		<0.04	mg/L	0.04	EPA 350.1	1/27/2017	CJS
Alkalinity		181	mg/L		EPA 310.1	2/2/2017	CJS
Chlorine Residual, Cl2		< 0.10	mg/L	0.10	EPA 330.5	1/24/2017	JMS
Conductivity		697	umhos	2	EPA 120.1	1/24/2017	JMS
Hardness		150	mg/L	5.0	SM 2340	2/2/2017	CJS
pH		7.4	S.U.		SM 4500-H B	1/24/2017	JMS

MCL = Maximum Contamination Level MDL = Method/Minimum Detection Limit UR = Unregulated

Thank you for choosing Analytical Laboratories for your testing needs.

If you have any questions about this report, or any future analytical needs, please contact your client manager:

CLIENT CODE: CLIENT INFORMATION:	CHAIN OF CUSTODY RECORD	l	A VA
nager: SALUAVA	Project Na	ANALYTICAL	LABS, INC.
C MCD (PWS Number:	1804 N. 33rd Street • Boise, ID 83703 (208) 342-5515 • Fax: (208) 342-5591 • 1-800-574-5773	Boise, ID 83703 12-5591 • 1-800-574-5773
Address: 20 Dhasmin	Purchase Order Number:	E-mail: ali@analyticallaboratories.com	allaboratories.com llaboratories.com
CANDER IN 836	Required Due Date:	IESIS KEQUESIED	DESTED
d by: (Please fring)	E-mail Address: Transported, by: (Plesse print)		
Lab ID Date Time Sa	rce)	- 00/00/00 -	one by
L1	Matrix Matrix		Remarks: (4,3°C
2793 1-24-17 0800 FE.	-C (3 307/rs)	7	
1-52-17	(3 contració	7	
2795 1-74-17 BATTON FE	(6 /5/0'c V	7	
Invoice to: (If different than above address)	Special Instructions:		
ALLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparatio Analytical Laboratories, Inc. errors in the conduct of a test or procedure, their be liable for any other cost associated with obtaining a sample or use of data	ALLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparation and testing services, obtain findings and prepare reports in accordance with Good Laboratory Practices (GLP). If, for any reason, be liable for any other cost associated with obtaining a sample or use of data.	 Sstring services, obtain findings and prepare reports in accordance with Good Laboratory Practices (GLP). If for any reason, shall be limited to the cost of the test or procedure completed in error. Under no circumstances will Analytical Jahoratories. Inc.	y Practices (GLP). If, for any reason, stances will Analytical Laboratones. Inc.
Note: Samples are discarded 21 days after results are reported. Hazardous	reported. Hazardous samples will be returned to clie	samples, will be returned to client or disposed of at client expenses	
Received By Schabure	od gei	MAKIN	Date: 17/1/7 Time: 25-7
	Print Name: Company.	りついて	Date:
or School School			Date: Time: A. C.
Hom House	Print Name: Company:		Date: Time:
Iotal # of Containers:	stody Seals Y / N / (TA) Intact: Y	N / @ Temperature Received: 9 75	01.01
are district		PLER	Contantion Opeca

Analytical Laboratories, Inc.

1804 N. 33rd Street Boise, Idaho 83703 Phone (208) 342-5515

Attn: SALVADOR ARREOLA

CALDWELL WASTEWATER

CALDWELL, ID 83607

Date Report Printed:

2/7/2017 12:02:36 PM

http://www.analyticallaboratories.com

These test results relate only to the items tested.

Laboratory Analysis Report

Sample Number: 1703241

Collected By: R HAWKER

Submitted By: CPATE

Source of Sample:

FE-C BIOMONITORING DAY 2

Time of Collection:

PO BOX 1179

7:13

Date of Collection:

1/26/2017

Date Received:

1/26/2017

Report Date:

2/7/2017

PWS#:

Field Temp:

Temp Revd in Lab: 6.3 °C

PWS Name:

Test Requested	MCL	Analysis Result	Units	MDL	Method	Date Completed	Analyst
Ammonia Direct (as N)		0.53	mg/L	0.04	EPA 350.1	1/27/2017	CJS
Alkalinity		189	mg/L		EPA 310.1	2/2/2017	CJS
Chlorine Residual, Cl2		< 0.10	mg/L	0.10	EPA 330.5	1/26/2017	RME
Conductivity		724	umhos	2	EPA 120.1	1/26/2017	RME
Hardness		155	mg/L	5.0	SM 2340	2/2/2017	CJS
рН		7.3	S.U.		SM 4500-H B	1/26/2017	RME

Page 1 of 1

Analytical Laboratories for your testing needs. Thank you for choosi

If you have any questions about this report, or any future analytical needs, please contact your client manager:

		<u> </u>		34.					6.33			d, diech,	JEN OFF				20							n'A
		5 CT 6770	575-475 B. S.	少多				Remarks:	Field temp.			SON SHE CHE	dis Zn, dis As, metal				LLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparation and testing services, obtain findings and prepare reports in accordance with Good Laboratory Practices (GLP). If, for any reason, a liable for any other cost associated with obtaining a sample or use of data.		Time:		Time: 1345	Time:		ALC A
アンア	ANALYTICAL LABS INC	1804 N. 33rd Street - Boise, ID 83703 (208) 342-5515 - Fax: (208) 342-5541 - 1 800 574 5772	Website: www.analyticallaboratories.com E-mail: ali@analyticallaboratorios.com	STED	\	/.		N X				33	-				Practices (GLP).		Date: 1-12-17	Date: 1-26-17	Date: 1-26-17	Date:	. 6	•
K	TICAL	3rd Street • B	ww.analyticall	TESTS REQUESTED		1	ふくが			-	7	7					ood Laboratory F der no circumsta	ıse.		ã	ă \	ď	6.3%	
	ANALY	1804 N. 3) 342-5515 • F	Website: w			16	State of the state			7						\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ordance with Go	at client exper					Temperature Received:	
FCORD		(208				5)				7						Ly Salled Reg	re reports in acc	r disposed of	AP	A.L.J.	.T.7.	Н	(IA) Tempera	
OF CUSTODY RECORD							Sample	Matrix	COATEN 1							Y	idings and prepa	discarded 21 days after results are reported. Hazardous samples will be returned to client or disposed of at client expense.	Company:		Company:	Company:	Intact: Y / N /	
OF CUS	PROJECT INFORMATION:		umber:				C, 25, 25	, — .		000		S.	140.2 Hall			Special Instructions:	rvices, obtain fir	ss will be retur	AWKER		Pate		Y / N / (NA)	
CHAIN	PROJECT Project Name:	PWS Number:	Z	Required Due Date:		Transported by: /D/ccc	. (r rease print)		12 2	(3//25/CE)	1 5	3 Corrawit	30				n and testing se	ardous sample	1 100 JA	Thus Pate	hers Pa	_	stody seals	
	Project	PWS	Purch	Requi		ranenorted by	Sample Description (Source)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7-6	1	15	VP 28				rform preparatio procedure, their s or use of data	reported Haz	600	Print Name:	Print Name:		AYS WITH SAMPLE (S)	
	N:	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		277	00000		Kell Sa	111	FF-	FE	FE-	BRU	8 PV				rries, Inc. will per fuct of a test or pretaining a sample	ter results are	164			lainers 1 Act		` '
	ALIANA LO	(7)		1777	Fax:			Sampled I		2715	0.713	1625	1625			above address)	alytical Laborato rrors in the conc sociated with ob	ed 21 days aft	Jan.	1	2	Total # of Containers		
	lager: 54/ 1/	ANY A	10P ()	44	Concernant Concernation Concerna	Sampled by: (Please print).	Date	-2//-1	-	>-	→ *	488	St·1 ►			Noice to: (If different than above address)	LLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparation and testing nalytical Laboratories, Inc. errors in the conduct of a test or procedure, their liability shall to liable for any other cost associated with obtaining a sample or use of data.	s are discard	K. (Illye)	elinquished By: (Signature)	Pigyature)			
ALIENNI CODE	Project Manager: 54/	Company:	Address:	7	Phone:	4)	Lab ID	3388	3339	3040	3241	3743/304E	5043/30HH			voice to: (//	LOCATION: halytical Labor liable for an	ote: Samples elinquished By	eceived By: Signatur	linquished E	Feived By:	SA PLE RECEIPT	V 2/19/12	

Analytical Laboratories, Inc.

1804 N. 33rd Street Boise, Idaho 83703 Phone (208) 342-5515

Attn: SALVADOR ARREOLA

CALDWELL WASTEWATER

CALDWELL, ID 83607

Date Report Printed:

2/20/2017 9:53:39 AM

http://www.analyticallaboratories.com

These test results relate only to the items tested.

Laboratory Analysis Report

Sample Number: 1703406

Collected By: D. CROSS

Submitted By: S. CURTIS

Source of Sample:

FE-C BIO MONITORING DAY 3

Time of Collection:

7:08

Date of Collection:

1/27/2017

Date Received:

1/27/2017

Report Date:

2/7/2017

PWS#:

Field Temp:

2.8 °C

PO BOX 1179

Temp Rovd in Lab: 3.1 °C

PWS Name:

Test Requested	MCL	Analysis Result	Units	MDL	Method	Date Completed	Analyst
Ammonia Direct (as N)		0.89	mg/L	0.04	EPA 350.1	1/27/2017	CJS
Alkalinity		179	mg/L		EPA 310.1	2/2/2017	CJS
Chlorine Residual, Cl2		< 0.10	mg/L	0.10	EPA 330.5	1/27/2017	NC
Conductivity		767	umhos	2	EPA 120.1	1/27/2017	NC
Hardness		157	mg/L	5.0	SM 2340	2/2/2017	CJS
pH		7.4	S.U.		SM 4500-H B	1/27/2017	NC

UR = Unregulated

Page 1 of 1

Thank you for choosing Applytical Laboratories for your testing needs.

If you have any questions about this report, or any future analytical needs, please contact your client manager:

FFC.0 17412.82 Remarks: *SPC (208) 342-5515 • Fax: (208) 342-5591 • 1-800-574-5773 ANALYTICAL LABS, INC. 1804 N. 33rd Street · Boise, ID 83703 Website: www.analyticallaboratories.com E-mail: ali@analyticallaboratories.com TESTS REQUESTED **CHAIN OF CUSTODY RECORD** WATER Sample Matrix Special Instructions Purchase Order Number: Cleoss | Transported by: (Please print) (3 costiners) Required Due Date: Sample Description (Source) E-mail Address: PWS Number: Project Name: 83605 1-27-1 0708 FE C Address: 208 dollmood La Project Manager SAL ARNYOLA CLIENT INFORMATION: Invoice to: (If different than above address) Sampled by: (Please Port) (EC (Phone: 11/2 12 | Fax: Date Time Sampled Sampled Company: CALD WW 3406 CLIENT CODE= Lab ID

ALLOCATIONS OF RISK: Analytical Laboratories, Inc. will perform preparation and testing services, obtain findings and prepare reports in accordance with Good Laboratory Practices (GLP). If, for any reason, Analytical Laboratories, Inc. errors in the conduct of a test or procedure, their liability shall be limited to the cost of the test or procedure completed in error. Under no circumstances will Analytical Laboratories, Inc. Note: Sample<u>s are discanded স্থ</u>া days after results are reported. Hazardous samples will be returned to client or disposed of at client expense.

Date: 17-77 Time: 730
Date: 1-27-17 Time: 1020
Date: 1-27-17 Time: 1120 Chains of Custody Seals Y / N / (A) Intact: Y / N / (A) Temperature Received: 3.1% Condition: 6.35 Company: Company: Company: Company: SPENDURY Print Name: SPECIER CUST FC WHITE: STAYS WITH SAMPLE (S) Print Name: Ppin Name: ش To(at # of Containers: Relinquished By: (Signatur Received By: (Signature) SAMPLE RECEIPT

Permit No.: ID0021504

Page 11 of 51

Table	Table 3: Total Phosphorus Interim Effluent Limits and Compliance Schedule Dates												
		Complete Bidding											
6	January 31, 2024	Deliverable: The permittee will provide DEQ and EPA with written notice that the Bid has been awarded.											
		Start Construction											
7	April 30, 2024	Deliverable: The permittee will provide DEQ and EPA with a copy of the Notice to Proceed with construction.											
		Complete Construction											
8	April 30, 2026	Deliverable: The permittee will provide DEQ and EPA with written notice that the construction is completed.											
		Process Optimization and Achieve Final Effluent Limitation											
9	September 30, 2026	Deliverable: The permittee must achieve compliance with the final effluent limitations and provide DEQ and EPA with written notice of compliance with final effluent limitations.											

Notes:

2. The annual average total phosphorus concentration and load must be reported on the December DMR.

D. Whole Effluent Toxicity Testing Requirements

The permittee must conduct chronic toxicity tests on effluent samples from outfall 001. Testing must be conducted in accordance with subsections 1 through 7, below.

1. Toxicity testing must be conducted on 24-hour composite samples of effluent. In addition, a split of each sample collected must be analyzed for the chemical and physical parameters required in Part I.B, above, with a required effluent sampling frequency of once per month or more frequently, using the sample type required in Part I.B. For parameters for which grab samples are required in Part I.B, grab samples must be taken during the same 24-hour period as the 24-hour composite sample used for the toxicity tests. When the timing of sample collection coincides with that of the sampling required in Part I.B, analysis of the split sample will fulfill the requirements of Part I.B as well.

2. Chronic Test Species and Methods

- a) For outfall 001, chronic tests must be conducted once per quarter. Quarters are defined as January March, April through June, July September, and October December.
- b) The permittee must conduct short-term tests with the water flea, Ceriodaphnia dubia (survival and reproduction test), the fathead minnow, Pimephales promelas (larval survival and growth test), and a green alga, Selenastrum capricornutum (growth test) for the first three suites of tests. After this screening period, monitoring must be conducted using the most sensitive species, which is defined below.

^{1.} The annual average total phosphorus concentration and load must be calculated as the sum of all daily discharges measured for total phosphorus during a calendar year, divided by the number of daily discharges measured for total phosphorus during that year.

Permit No.: ID0021504 Page 12 of 51

- (i) The most sensitive species is the species which, during the screening period, produces the greatest maximum toxicity result in chronic toxic units (TU_c), which is defined in Part I.D.2.d, below.
- (ii) If all three species produce the identical maximum toxicity result (including no toxicity in 100% effluent) the permittee must use Ceriodaphnia dubia for subsequent tests.
- (iii) If two species produce the identical maximum toxicity result, which is greater than 1.0 TU_c and also greater than the maximum toxicity result of the third species, the permittee may use either of the two species producing the greater maximum toxicity result for subsequent tests.
- c) The presence of chronic toxicity must be determined as specified in *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*, Fourth Edition, EPA/821-R-02-013, October 2002.
- d) Results must be reported in TU_c (chronic toxic units), which is defined as follows:
 - (i) For survival endpoints, $TU_c = 100/NOEC$.
 - (ii) For all other test endpoints, $TU_c = 100/IC_{25}$.
 - (iii) IC₂₅ means "25% inhibition concentration." The IC₂₅ is a point estimate of the toxicant concentration, expressed in percent effluent, that causes a 25% reduction in a non-quantal biological measurement (e.g., reproduction or growth) calculated from a continuous model (e.g., Interpolation Method).
 - (iv) NOEC means "no observed effect concentration." The NOEC is the highest concentration of toxicant, expressed in percent effluent, to which organisms are exposed in a chronic toxicity test [full life-cycle or partial life-cycle (short term) test], that causes no observable adverse effects on the test organisms (i.e., the highest concentration of effluent in which the values for the observed responses are not statistically significantly different from the controls).

3. Quality Assurance

- a) The toxicity testing on each organism must include a series of five test dilutions and a control. The dilution series must include the receiving water concentration (RWC), which is the dilution associated with the average monthly whole effluent toxicity limits, two dilutions above the RWC, and two dilutions below the RWC. The RWCs are:
 - (i) 62% effluent for April June
 - (ii) 39% effluent for July March
- b) All quality assurance criteria and statistical analyses used for chronic tests and reference toxicant tests must be in accordance with Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to

Permit No.: ID0021504 Page 13 of 51

Freshwater Organisms, Fourth Edition, EPA/821-R-02-013, October 2002, and individual test protocols.

- c) In addition to those quality assurance measures specified in the methodology, the following quality assurance procedures must be followed:
 - (i) If organisms are not cultured in-house, concurrent testing with reference toxicants must be conducted. If organisms are cultured in-house, monthly reference toxicant testing is sufficient. Reference toxicant tests must be conducted using the same test conditions as the effluent toxicity tests.
 - (ii) If either of the reference toxicant tests or the effluent tests do not meet all test acceptability criteria as specified in the test methods manual, the permittee must re-sample and re-test within 14 days of receipt of the test results.
 - (iii) Control and dilution water must be receiving water or lab water, as appropriate, as described in the manual. If the dilution water used is different from the culture water, a second control, using culture water must also be used. Receiving water may be used as control and dilution water upon notification of EPA and IDEQ. In no case shall water that has not met test acceptability criteria be used for either dilution or control.

4. Reporting

- a) The permittee must submit the results of the toxicity tests with the discharge monitoring reports (DMRs). Results must be reported on the DMRs for the last month of the quarter in which the samples were taken.
- b) The report of toxicity test results must include all relevant information outlined in Section 10, Report Preparation, of Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition, EPA/821-R-02-013, October 2002. In addition to toxicity test results, the permittee must report: dates of sample collection and initiation of each test; flow rate at the time of sample collection; and the results of the monitoring required in Part I.B of this permit, for parameters with a required monitoring frequency of once per month or more frequently.
- 5. Preparation of initial investigation toxicity reduction evaluation (TRE) workplan: By January 31, 2017, the permittee must submit to EPA a copy of the permittee's initial investigation TRE workplan. This plan shall describe the steps the permittee intends to follow in the event that chronic toxicity is detected above the applicable effluent limits in Table 1 of this permit, and must include at a minimum:
 - a) A description of the investigation and evaluation techniques that would be used to identify potential causes/sources of toxicity, effluent variability, treatment system efficiency;

Permit No.: ID0021504 Page 14 of 51

b) A description of the facility's method of maximizing in-house treatment efficiency, good housekeeping practices, and a list of all chemicals used in operation of the facility; and

- c) If a toxicity identification evaluation (TIE) is necessary, who will conduct it (i.e., in-house or other).
- d) The initial investigation TRE workplan must be sent to the following address:

US EPA Region 10 Attn: NPDES WET Coordinator 1200 Sixth Avenue Suite 900 OWW-191 Seattle, WA 98101-3140

- 6. Accelerated testing: If chronic toxicity is detected above the applicable average monthly limit for whole effluent toxicity in Part I.B or I.C of this permit, the permittee must comply with the following:
 - a) The permittee must conduct six more bi-weekly (every two weeks) chronic toxicity tests, over a 12-week period. This accelerated testing shall be initiated within 10 calendar days of receipt of the test results indicating the initial exceedance.
 - b) The permittee must notify EPA of the exceedance in writing at the address in Part I.C.5.d, above, within 5 calendar days of receipt of the test results indicating the exceedance. The notification must include the following information:
 - (i) A status report on any actions required by the permit, with a schedule for actions not yet completed.
 - (ii) A description of any additional actions the permittee has taken or will take to investigate and correct the cause(s) of the toxicity.
 - (iii) Where no actions have been taken, a discussion of the reasons for not taking action.
 - c) If none of the six accelerated chronic toxicity tests required under Part I.C.6.a are above the applicable average monthly limit in Part I.B or I.C of this permit, the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.
 - d) If any of the six accelerated chronic toxicity tests required under Part I.C.6.a are above the applicable average monthly limit in Part I.B or I.C of this permit, then the permittee must implement the initial investigation TRE workplan as described in Part I.D.7.
- 7. Implementation of Initial Investigation TRE Workplan
 - a) The permittee must implement the initial investigation TRE workplan within 48 hours of the permittee's receipt of the accelerated toxicity test result demonstrating an exceedance of the applicable average monthly limit in Part I.B or I.C of this permit.

Permit No.: ID0021504 Page 15 of 51

(i) If implementation of the initial investigation workplan clearly identifies the source of toxicity to the satisfaction of EPA (e.g., a temporary plant upset), the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.

(ii) If implementation of the initial investigation workplan does not clearly identify the source of toxicity to the satisfaction of EPA, then the permittee must begin implementation of further toxicity reduction evaluation (TRE) requirements in part I.D.8 below.

8. Detailed TRE/TIE

- a) If implementation of the initial investigation workplan does not clearly identify the source of toxicity to the satisfaction of EPA, then, in accordance with the permittee's initial investigation workplan and EPA manual EPA 833-B-99-002 (*Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants*), the permittee must develop as expeditiously as possible a more detailed TRE workplan, which includes:
 - (i) Further actions to investigate and identify the cause of toxicity:
 - (ii) Actions the permittee will take to mitigate the impact of the discharge and to prevent the recurrence of toxicity; and
 - (iii) A schedule for these actions.
- b) The permittee may initiate a TIE as part of the overall TRE process described in the EPA acute and chronic TIE manuals EPA/600/6-91/005F (Phase I), EPA/600/R-92/080 (Phase II), and EPA-600/R-92/081 (Phase III).
- c) If the detailed TRE/TIE clearly identifies the source of toxicity to the satisfaction of EPA, the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.

9. Inconclusive TRE/TIE

- a) If the detailed TRE described in Part I.D.8 is inconclusive, the permittee must conduct six bi-weekly (every two weeks) chronic toxicity tests, over a 12-week period. This accelerated testing shall be initiated within 10 calendar days of completing the detailed TRE/TIE.
- b) If none of the six accelerated chronic toxicity tests required under Part I.D.9.a exceed the applicable average monthly limit in Part I.B or I.C of this permit, the permittee may return to the regular chronic toxicity testing cycle specified in Part I.D.2.a.
- c) If any of the six accelerated chronic toxicity tests required under Part I.D.9.a exceed the applicable chronic toxicity trigger in Part I.D.6 of this permit, then the permittee must repeat the TRE/TIE process described in Part I.D.8.


E. Surface Water Monitoring

The permittee must conduct surface water monitoring. The program must meet the following requirements:

Month/Year: January 2017

Start Date:	1-17-17	End Date:		D III							
Trans.	1	2		Board#:	/						
1-17 0		+ -	3	4	5	6	7	8	9	10	Time
			1		-				\ \ \ \	1	1630
-18 1		-	1	1		· /	- L		1		1200
1-19 2			1~	\ <u>\</u>			<u> </u>		1		1525
1-20 3			1	/							1305
1-21 4		115	1/4	1/3	1/4	1/6		1/2	1/-	11/6	
1.77 2	/			/	✓			V	2/1	1,7	1245
1-736	1/14	2/13	2/12	2/12	2/11	2/14	11/1	2/13	15/11	12/11	135
1-247	2/15	3/10	3/17	3/6	3/10	3/21		3/9	3/8	1	1300
Survival > 80 4	70:	yes/no			Average o	fspring per	emale > 20:	_1 -1]	yes/no		11200
Start Date:		End Date:		Board#:)						
Trans.	1	2	3	4	5	6	7	8	9	10	Т:
1-17 0	V					V	1	1		110	Time /635
1-18 1		~					1				1205
1-192		/			~	1					1.
1-20 3	/			/			1				1300
1-214	V		1/5	1/6		1/7		1/6	1/7	111	1310
1-225		\checkmark	✓	~	1/		1/3		.,,	1/6	1255
1-236	1/10	1/12	2/14	2/11	1/12	7/4	2/15	2/14	2/11	2/11	1355
-247	5/3	3/8	3/8	3/1	2/10	3/19		3/20	3/22	3/20	1355
urvival > 80%	·	/es/no		.	Average offs	pring per fei	male > 20:	13/40	yes/no	ا مرهاد،	1302
art Date:	Ε	ind Date:	E	Board#: 3							
Trans.	1	2	3	4	5	6	7	8	9	10	T:
	<u> </u>	~	/		· -	/	<u></u>	<i>i</i>	<u> </u>	10	Time 1640
-18 1		~	~	<i>i</i>	· -	-	<u></u>	i.	سسا	<u></u>	1210
- 19 2	/	\checkmark	/					1			1515
-203	/	~	V			V		<i>-</i>		7	1315
-2/4	/	$\sqrt{}$	1/3	1/2	116	1/6	~	1/6	1/5	1/4	
-77.5	\checkmark	~	V	V	V		1/4	70		-1-1	1305
		11	2/11 ?	2/11	2/12		219	9/11	2/14	3/14	
	14	1	3/19 3	5/18	3/21	3/21		3/18	3/22	3/21	400 310
vival > 80%:	ye	rs/no			verage offsp	ring per fem	ale > 20:	у у	es/no	ا سرا ب	1210

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel:970/484-5091 Fax:970/484-2514

YTC TOTAL SOLIDS MEASUREMENT

(Method from EP.4/505/8-89-002a)

YTC Process Date: Average Total Solids:

12/28/2016: Best if used by 3/31/2017

1750 mg/I

Ingredient Lot Numbers

Pines International® Wheat Grass: COCDW12S50; Zeigler Finfish Starter #1 (Lot 10/19/2016); Fleischmanns Yeast: G-3

Analyzed Metals	Report Limits	Results (mg/L
Aluminum	0.03	
Arsenie		0.08
Cadmium	100.0	U
Chromium	0.001	U
Copper	0.005	U
Iron	0.05	0.033
Lead	0.02	0.24
Mercury	0.001	U
Sickel	0.001	11
ilver	0.005	11
inc	0.001	
anc	0.01	0.14

EPA Required Toxic Metals and Pesticide Analyses*

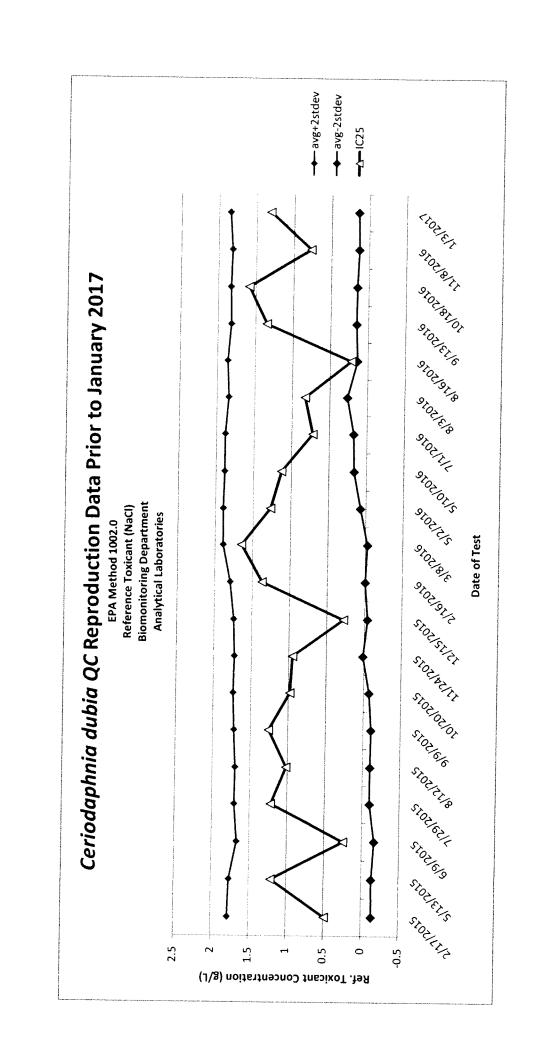
Compounds	Panal Pesti	cide Analyses*
	Report Limit	s Results
Aldrin		(ug/L)
alpha-BHC	0.5	U
beta-BHC	0.5	Li
delta-BHC	0.5	Į į
gamma-BHC (Lindane)	0.5	L I
alpha-Chlordane	0.5	U
gamma-Chlordane	0.5	U
4,4' - DDD	0.5	L)
4.4" – DDE	0.5	
4,4° -DDT	0.5	U
Dieldrin	0.5	
Endosulfan I	0.5	
Endosulfan II	0.5	U
Endosulfan sulfate	0.5	U
Endrin Sanare	0.5	
Endrin aldehyde	0.5	
Endrin ketone	0.5	
Heptachlor	0.5	U
Heptachlor epoxide	0.8	U
Methozychlor	0.5	
Chlordane (technical)	0.5	
Toxaphene	5.0	Į ė
Aroclor-1016	25	U
Aroclor-1221	5.0	U
Aroclor-1232	5.0	U
Apada 12.62	5.0	U
Aroclor-1242	5.0	(ii)
Aroclor-1248	5.0	U
Aroclor-1254	5.0	l l
Aroclor-1260	5.0	U
Aroclor-1262	5.0	U
Aroclor-1268	5.0	U
	27.07	C+

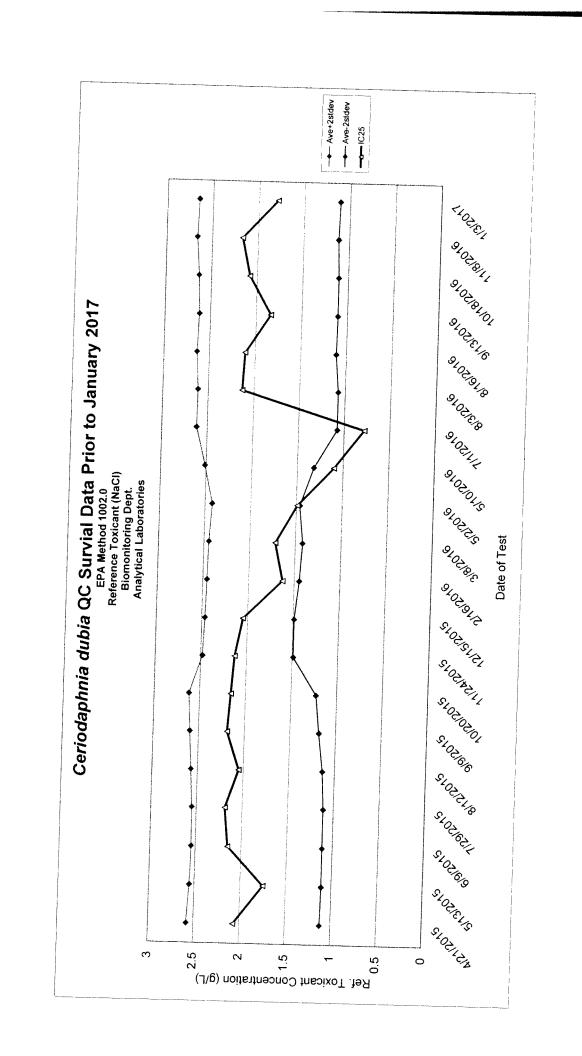
U - Indicates compound was analyzed for but not detected.

^{*}Testing performed by Energy Labs, Billings, Montana

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax: 970/484-2514


Algae Preparation History


	DATE:	1/16/2017	-
,	0 1		
	SPECIES:	Raphidocelis subcapitata*	
INOCULATIO	N DATE:	1/3/2017	
HARVES	T DATE:	1/9/2017	
CONCENTRATIO	N DATE:	111/2017	
CELL COU	NT (/ml):	$3.0 \times 10^{7} \text{ cells/ml}$	
Comments:	* Forme ** All co	erly known as <i>Psuedokirschneriella subcapitata</i> and ncentrated algae diluted to proper cell count with re	d <i>Solenastrum capricornutum</i> econstituted moderately hard DI water.

Supervisor

Literature Cited

- Short-Term methods for Estimating the Chronic Toxicity of Effluents and receiving Waters to Freshwater Organisms, Fourth Edition. October 2002. EPA-821-R-02-013.
- 2. <u>Methods for Measuring the Chronic Toxicity of Effluents to Freshwater and Marine Organisms</u>, EPA/600/4-85/013, US EPA.
- 3. <u>Standard Methods for the Examination of Water and Wastewater</u>, 19 Edition, 1995, APHA, AWWA, WPCF.
- 4. <u>Handbook for Analytical Quality Control in Water and Wastewater Laboratories</u>, Environmental Monitoring and Support Laboratory, Cincinnati, EPA/600/4-79/019, US EPA

PAGE	į	OF	2	
ON TEST.				_
10 (11	~			

BENCH SHEET FOR OC CERIODAPHNIA SURVIVAL/REPRODUCTION TEST MONTH Dec 2016 Analyst: L. C.P. Test Start Date/Time: 12/13/16

New Young D.O. New Old рΗ D.O.

Daily Old pH Temp

Conc. CONTROL

Conc.

0.50 g/L

	4			T	T -		T									
Day-Lab #	$+\frac{1}{2}$	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	XXX	_XXX
	-	V	~	V	L	- V	1/	V	·/	U		1.8	77	XXX		22 1
1	1	/	V					/	V			78	76	-1	XXX	20.00
2		/	\checkmark	\checkmark	<u> </u>	V	V	V	V			8.1	7.3	8.0	1.1	25.0
3	-	V					/					5700	777	7.	7.8	20,0
4	1/6	1/9	1/7	1/7	1/4	1/9	1/7	1/9	1/8	1/8	<u> </u>	9.0	8.0	7.6	8.0	22.7
5	√	2/14	V	2/11		^/	/	2/14	10	./0	<u> </u>	8.0	O .	7.5	8.1	23.0
6	2/14		2/14	/	215	216	2/15	110	2/15	2/12	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.2	B. /	Y-2	8-1	22.3
7	3/20	3/28	122	3/19	3/24	3/21	3/17	3/22	9/13	122	10b	40 0	8-14	7.7.5	8.2	22.1
Total	40	46	43	37	43	46	7 9	48	<u>````</u> ?	3/25	192			1.8	7.8	
			1		10	10	4	10	-3	16	715					

New New Old Daily Young D.O, pН D.O. Old pH Temp

1																
Day-Lab #	1	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	XXX	XXX
0		<i>i</i>	<u> </u>	V	V	V	V	V	<i>'</i>			8.1	78	XXX		^^^
1	<u> </u>	V	_ <			V	V	1				79	7 9	7/	70	276
2		/	\checkmark					V				8.1	79	79	70	22.7
3								/	/	./		78	7.0	4.1	7.8	22.5
4	1/6	1/7	1/6	1/8	1/7	1/8	1/7	1/9	1	1/8	10 0	1977	7.3	1.1	0-1	12.8
5	<u> </u>	2/16	V		1	V	V	267	1/1		<u>39</u>	P (. 1	0.1	1.5	8.1	23.2
6	2/15	~	2/14	2/12	2/12	2/18	2/15		2/12	7/1/	31		8.0	ما ا	8-1	22,3
7	3/20	3/23	3/19	3/24	\$21	5/21		3/22	1	3/12	112	8.1	8.1	71.8	8.2	227
Total	41	41	39	44	41	47	39	LIV	15	425	110			7.8	8.0	
						111	01	10	10	7 //	410					

New New Old Daily Young D.O, рΗ D.O. Old pH Temp

Conc.	1.25	g/L									Young	D.O,	pН	D.O.	Old pH	Temp
Day-Lab #	1	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	XXX	VVV
0	-	/	V	V	V	/	V	V	ン	V		8-1	7.8	XXX	XXX	XXX
$\frac{1}{2}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V			\sim	<u>/</u>			<u></u>	/		7.9	7.8	7.7	79	22,9
3	×		/		./	\/ !/	<u> </u>	V	V	V		8.0	7.8	8.2	7.9	7,2,7
4	i/7	1/6	1/6	1/5	1/7	1/6	1/6	1/7	0	1/7	57	1.7 7.7	7.9	7.7	8.1	22.9
5							\(\sigma\)	2/15	- I	/	15	7.7	8.1	7.6	8-2	23.2
6	3/13	<i>7/13</i>	2/12	2/9	² /15	2/11	2/13	Y		2/17	105	8.2	8.3	45	67	22.4
Total	28	16/9	318	<i>≯</i> (8).	422 44	417		3/23	V	2/17 3/22	159			1.8	8.1	000
Total	30	10	اعل	Jo	171	<u> </u>	19	93	0	46	336					

BENCH TEST M	SHE	ET OC	CER	dOIS	A PH	NIA	CHD	VIV	AT /I	ומיקום	ODI		PA	GE	<u> </u>	<u></u>
TEST M	ONTH	_ D	EC.	201	b	11171	SUK	VIV	ALL/I Ana	lvet	WE,	TION	TEST.			
TEST Me Test Star	t Date/	Time:	121	13/	16,	1130			Tes	t Stor	Date/1	ime: \	2/20	()(
					,					•			- 100			
											# Young	New	New			Daily
Conc.	2.00	g/L									roung	D.O.	pН	D.O.	Old pH	Temp
Day-Lab #	1						1	T			7					
0		2	3	4	5	6	7	8	9	10	XXX		XXX	XXX	XXX	XXX
1	\ <u>~</u>	44	V		V	V		V	1		·	8.1	7.9	XXX	(XXX	221
2	 	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	\leq	<u> </u>	✓	~	×	1		7.9	7.9	7,7	7.9	23.0
3	/	1	V		17	Y	Y	D	D	1		8.1	7.9	8.2	7.9	22.6
4	-	1		~	+	<i>'</i>	V		$\vdash \vdash$	1/		7.8	8-0	7.7	8.1	22.9
5	1/3	1	1			110			├-}-	1/4		7-7	8.0	7.8	8.0	23.1
6	2/10	1/3	7	2/8		2/10	VI	+		2/	5	7.6	8.1	7.6	8.1	72.4
7	\/	2/11	1/6	76	V	0110	11	1/		2/11	43	8.1	8.5	8.0	8.3	23.3
Total	13	19	6	8	0	2	7	O	A	É	69	-		17.9	8.1	
Conc.	2.75	g/L									# Young	New D.O,	New pH	Old D.O.	Old pH	Daily Temp
Day-Lab #	1	2	3	4	5	6	7	8	9	10	XXX	XXX	VVV	T WAY	T	
0	$\sqrt{}$	V							./			8.1	78	XXX	XXX	XXX
1	D	D	/	1	7				T				79	XXX	XXX	22.7
2			D	D	7	2 3	7			Ň		7.8	7.8	7.7	76.0	33.1
3							1	D		1		7.7	7.9	8-2	7.9	2,6C
4								ī	11	1		1 /	7.1		+	
)										1					-	
)			$\downarrow \downarrow$							1						
/	V	V		\forall	\downarrow		W '	V	V	V						
Total	01	0	0	0	0	- 1		0	0	O					-	
Conc	2 50	~./I							1		# Young	New D.O,	New pH	Old D.O.		Daily Temp

Conc.	3.50	g/L									Young	D.O,	pH	D.O.	Old pH	Daily Temp
Day-Lab#	1	2	3	4	5	6	7	8	9	10	XXX	XXX	XXX	XXX	VVV	
0	X	X	V	V	V	V	V	1	V			81	7.8	XXX	XXX	XXX
2	$\frac{1}{1}$	\overline{D}	X	X	0	D	D	7	P	D		7.8	79	7.9	8.0	23,1
3			L	Ī				P	╁╂╌			8.0	7.8	7.8	7.8	3 2.5
4 5																
6		-				_		-								
7	\downarrow	V	1/	\forall		1		V								
Total	0	0	Ö	8	Ö	0	0	0	Ö	Ö						

Facility Test ID

Analytical Laboratories QC DECEMBER 2016

1/3/2017

Date IWC Conc. Analyst Will Reynolds

Species Ceriodaphnia dubia (water flea)

Test Type Chronic Survival

Input

Number of Organis	ms Expose	d or Counted		***************************************			····
			Concent	trations			
Replicate	<u>0</u>	<u>0.5</u>	<u>1.25</u>	<u>2</u>	<u>2.75</u>	<u>3.5</u>	
1	1	1	1	1	1	1	
2	1	1	1	1	1	1	
3	1	1	1	1	1	1	
4	1	1	1	1	1	1	
5	1	1	1	1	1	1	
6	1	1	1	1	1	1	
7	1	1	1	1	1	1	
8	1	1	1	1	1	1	
9	1	1	1	1	1	1	
10	1	1	1	1	1	1	

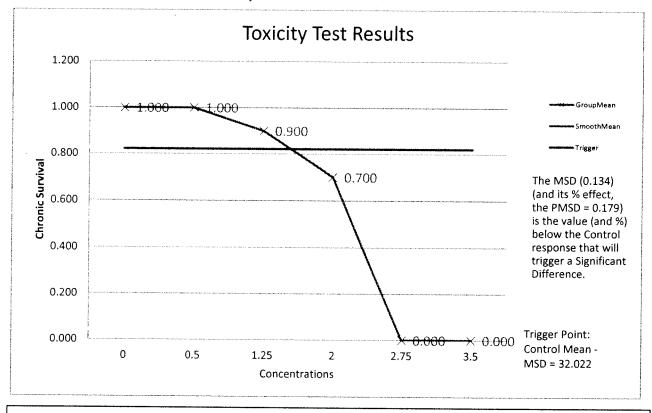
Number of Organisms Surviving or Responding

			Concent	trations		
Replicate	<u>0</u>	<u>0.5</u>	<u>1.25</u>	2	<u>2.75</u>	<u>3.5</u>
1	1	1	1	1	0	0
2	1	1	1	1	0	0
3	1	1	1	1	0	0
4	1	1	1	1	0	0
5	1	1	1	0	0	0
6	1	1	1	1	0	0
7	1	1	1	1	0	0
8	1	1	1	0	0	0
9	1	1	0	0	0	0
10	1	1	1	1	0	0

Total Organisms Total Responding	10 10	10 10	10 9	10 7	10	10	
, ,	100.0%	100.0%	90.0%	70.0%	0.0%	0.0%	

Conc.

Mean


Statistical Data

Stdev

CV

Steel test

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

The United States Environmental Protection Agency (EPA), through its Office of Wastewater Management, funded and managed the development of the whole effluent toxicity (WET) Tool described here. This is a tool that calculates WET test endpoints for the EPA-approved WET test methods and is used by EPA internally for analyzing valid WET test data. Neither the EPA nor any of their employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or process disclosed. Furthermore, the WET Tool is supplied "as-is" without guarantee or warranty, expressed or implied, including without limitation, any warranty of merchantability or fitness for a specific purpose.

Facility Test ID Date

Analytical Laboratories QC DECEMBER 2016

1/3/2017

IWC Conc.

Analyst Will Reynolds

Species Ceriodaphnia dubia (water flea)

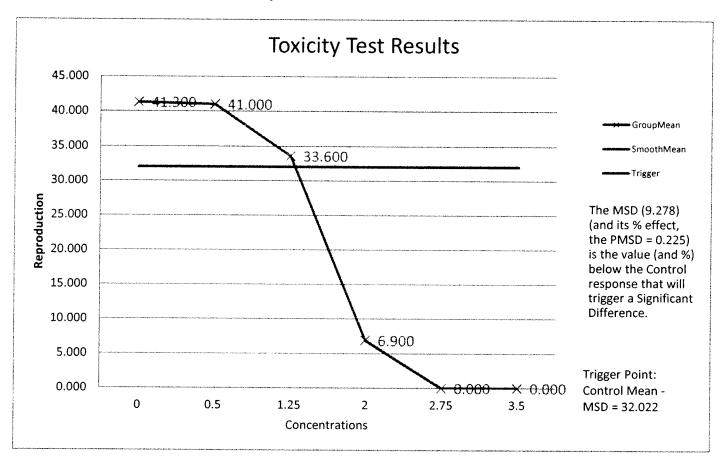
Test Type Reproduction

Input

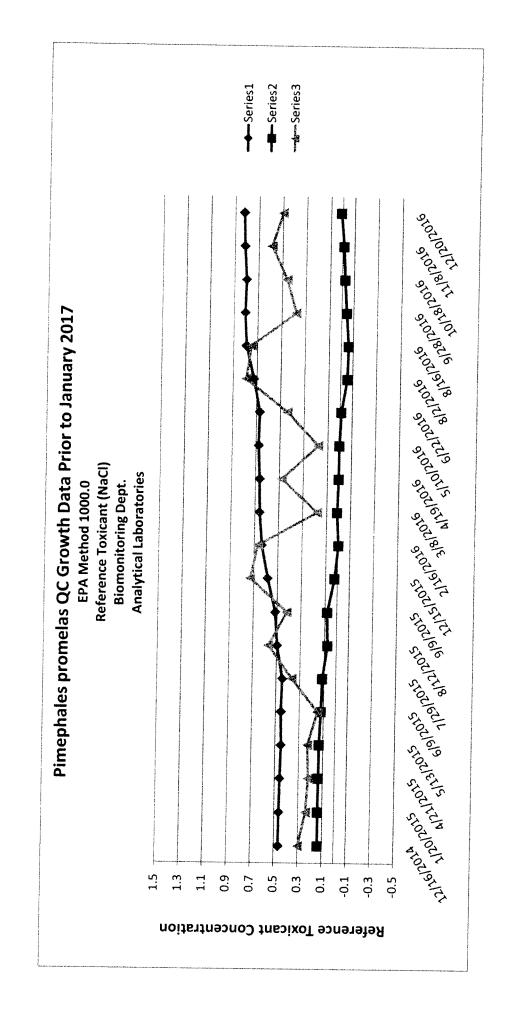
			Concen	trations			
Replicate	<u>0</u>	<u>0.5</u>	<u>1.25</u>	<u>2</u>	<u>2.75</u>	3.5	
1	40	41	38	13	0	0	
2	46	46	42	14	0	0	
3	43	39	36	6	0	0	
4	37	44	32	8	0	0	
5	43	41	44	0	0	0	
6	46	47	34	12	0	0	
7	39	39	19	1	0	0	
8	48	48	45	0	0	0	
9	23	18	0	0	0	0	
10	48	47	46	15	0	0	

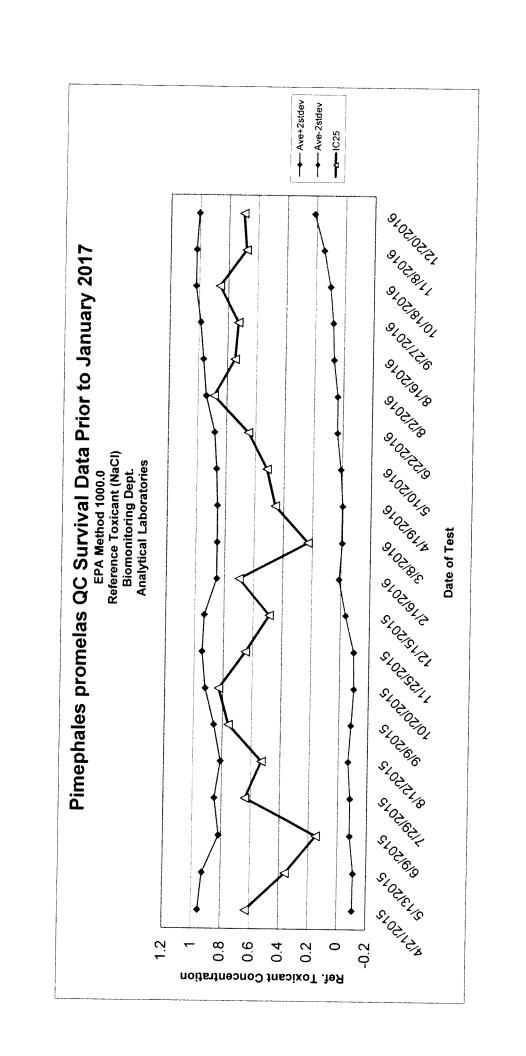
Mean	41.300	41.000	33.600	6.900	0.000	0.000
Stdev	7.454	8.769	14.269	6.315	0.000	0.000

Output


Output						
Statistical Data	Conc.	Mean	Stdev	CV	Steel test	
	0	41.300	7.454	0.180		
	0.5	41.000	8.769	0.214	NS	
	1.25	33.600	14.269	0.425	NS	
	2	6.900	6.315	0.915	Y	
	2.75	0.000			Y	
	3.5	0.000			Y	

NOEC	LOEC	IC25	95% Co	nfidence Intervals	
1.25	2	1.31	0.92	1.45	


TST	Calculated t-value	Table t-value	Relative % Effect at IWC


MSD	PMSD	
9.278	22.5%	

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

Test Month/Year: Test Start Date/Time: Bench Sheet For Fathead Minnow QC Survival Test Method 1000.0

Analyst:
Test Stop Date/Time: 12/80/16

			R	deference Toxi	cant Used: So	odium Chloric	de			
Day		0	1	2	3	4	5	6	7	Remarks
Conc:	Beaker#	:			 	 		 	 '	Nemarks
Control		1 10	10	10	10	10	la	 a 	4	ļ
		2 / 0	13	10	10	13	 		 	ļ
		3 10					10	(0	 	
			10	10	10	10	10	10	10	
New DO	XXX	4 10	10	10	10	19,	12-1		1 7	
		 <u> </u>	7.5	7.6	7.7	1-6	8.0	85	XXX	
New pH	XXX	7.3	7.5	7.6	7.9	7.9		8.1	XXX	
Temp	XXX		923.2	12.7 22.9	22.5	227	22.3	LCC	XXX	
Old DO	XXX	XXX	6,5	6.3	6.1	5.9	7.0	(3	75	
Old pH	XXX	XXX	7.7	17.7	7.6	7-6-	7780	JR 7.6	7.6	
Conc: 0.25g/l		1 10	10	10	10	10	18	10		
		2 10	10	10	10	10	10	9	\$	
		3 10	10	10	10	10	10	10	a	
-		4 10	10	10	10	10	10	10	10	
New DO	XXX	77	7.5	7.6	77	7/	 	1 10	 	
New pH	XXX	8.0	7.8	3.0	+	19.4	1 × 8	18-3	XXX	
Temp	XXX	23.6	23.2	22.9	127 7	8.2	1267	1773	XXX	
Old DO	XXX		7 2		10-0-1	22.6	1050	1000	XXX	
Old pH	XXX	XXX	6.5	6.4	6.4	6.0	6,6	6.9	7.4	
· · · · · · · · · · · · · · · · · · ·			7.6	1./	7-6	7.6	1768	7.60	7.4	
Conc: 1.5g/L		1 10	10	10	10	9	7.7	15	12	
		2 10	10	10	10	9	\$	8	Ч	
		3 <i>10</i>	10	10	10	9	*	6	Ü	
··		4 10	10	10	10	9	1 -1	6		
New DO	XXX	7. 7	7.5	7.5	7.7	7.6	7.0	85	XXX	·
New pH	XXX	8.0	7.9	8.0	7.9	8.1	79	8.6	XXX	
Temp	XXX	23.9	23.2	22.7	23.2	22.7	22.0	231	XXX	
Old DO	XXX	XXX	6.6	6.7	6,2	6.2	6.8	1.0	₹,6	
Old pH	XXX	XXX	7.7	7.7	77	7.7	 = 3' = 3	76		
Conc: 2.5g/L	-		10	10	10		1 31	1	ط. اِ	
	1		10		10	9	18		(p)	
	1 3		 	10	10	10	10	<u> </u>	4	
			10	10	10	10	13-	<u> </u>	9	
	100			10	10	8	6	4	9	
New DO	XXX	7.7	7.5	7.5	<i>1.</i> 7	7.6	8.0	7.5	XXX	
New pH	XXX	8.0	7.9	7.9	7.9	8.1	8.0	8.0	XXX	****
Гетр	XXX	13.5	23.2	22.5	23.7	22.9	22.8	23.0	XXX	
Old DO	XXX	XXX	6.3	6.7	6.6	6.3	6.8	7.1	7.6	*****
Old pH	XXX	XXX	7.7	7.7	7.7	7.7	77. 77	7,6	7.6	
Conc:	1	10	10	10	10	10	54	4	u v	
Conc: 3.5g/L	2		10	10	10	Q	\$	6	1	***************************************
	3	+ - 	10	10	10	10	, ·	6		
	4		io	10	<u> </u>	a	8 7	ے ا	+	
lew DO	XXX	7.7	7.5	7.5	7.7		₹.>		_	
lew pH	XXX	8.0	7.9		7.9	4.6			XXX	
emp	XXX	23.5	72 5			8.1	8.0	8,0	XXX	
old DO	XXX		23.3	22.8	23.8	23.0	22.8	22.8	XXX	
old pH	XXX	XXX	6.8	6.8	6.6	6.3	7,0	للبليا	7.5	
<u></u>		XXX	1.1	7.8	7.6	7.7	7.8	7.6	7.6	
onc: 8.5g/L	1		10	9	3	3	30	3	2	
· · · · · · · · · · · · · · · · · · ·	2		10	5	0	0	0	0	0	
···	3		10	3	a	1	0	0	0	
	4	10	10	4	1	0	6	0	0	
ew DO	XXX	7.8	7.5	7.5	7.8	7.6	8,2		XXX	
ew pH	XXX	98 7.9	7.8	7.9	7.8	8.0	P/61	3,8		
emp	XXX	23.6	23.4			3:0	1. \ 1		XXX	
			72,7	23.3	23.1	22.8	22:1	41	XXX	
id IVI	XXX	XXX	6,9	7.0	6.8	6.8	11	7.4	7.2	
ld DO	VVV	1000								
ld pH	XXX	XXX	7.6	7.7	7.6	7.7	1.1	7,6	77	I
ld pH eding	XXX A.M. P.M.	XXX XXX WR	7.6 cp Wh	7.7 WR	7.6 cp		with the	WR	XXX	

Facility Test ID

Analytical Laboratories QC DECEMBER 2016

12/20/2016

Analyst **Species** Will Reynolds Pimephales promelas (fathead minnow)

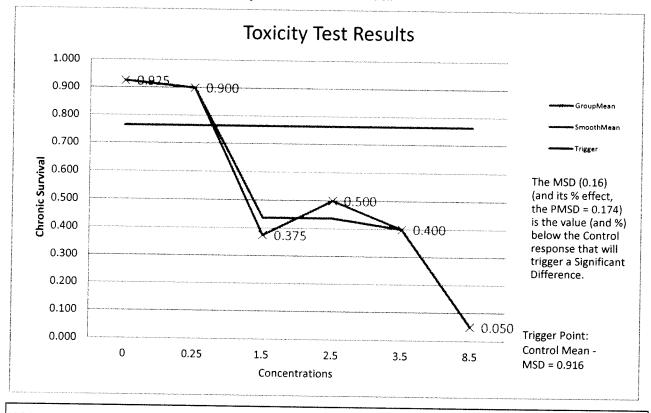
Test Type Chronic Survival

IWC Conc.

Input

Date

p.u.t							
Number of Organis	sms Expose	d or Counted					
			Concer	itrations			
Replicate	<u>0</u>	<u>0.25</u>	<u>1.5</u>	<u>2.5</u>	<u>3.5</u>	<u>8.5</u>	
1	10	10	10	10	10	10	
2	10	10	10	10	10	10	
3	10	10	10	10	10	10	
4	10	10	10	10	10	10	


Number of Organisms Surviving or Responding

			Concer	ntrations		
Replicate	<u>0</u>	0.25	<u>1.5</u>	<u>2.5</u>	<u>3.5</u>	8.5
1	9	8	2	6	4	2
2	9	9	4	4	4	0
3	10	9	4	6	6	0
4	9	10	5	4	2	0

Total Organisms	40	40	40	40	40	40	
Total Responding	37	36	15	20	16	2	
% Responding	92.5%	90.0%	37.5%	50.0%	40.0%	5.0%	
Output						2.270	

MSD	PMSD				
rst	Calculated t-value		Table t-va	lue	Relative % Effect at IWC
0.25	1.5		0.70	0.53	0.81
NOEC			IC25	95% Conf	idence Intervals
	8.5	0.235	0.152	0.649	Y
calculations	3.5	0.680	0.173	0.254	Y
used for endpoint	2.5	0.785	0.116	0.148	Υ
the transformed data	1.5	0.655	0.136	0.208	Y
Statistics are based on	0.25	1.254	0.125	0.099	NS
	0	1.290	0.081	0.063	
Statistical Data	Conc.	Mean	Stdev	CV	Dunnett test

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

BENCH SHEET FOR FATHEAD MINNOW INITIAL WEIGHT DATA QC EPA METHOD 1000.0

~		
Month/Year:Dec 2016	Test Start Date: 12/13/16	Drying Temp: 100°C
Weighing Date: 12/14/16	Test End Date: 12016	Drying Time: 23 hrs
Location/Client:		, <u>.</u>

	Rep No.	Weight of Boat (g)	Boat and Dry Larvae (g)	Dry Weight of Larvae (g)		Mean Dry Weight of Larvae (mg)	Average
Initial	17	1.2878	1,2892	100 H	(0)	.14	
	23	1.2924	1,2936	6100	1	-12	
	53	1.293	(.2925	,0012		. (3	0.13mg
	14	1.2920	1,2934	P100;	V	. (પ	

Reviewed By: 5C

Fathead Minnow QC Weight Data

Analyst: Loc 201 6 Drying Temp: 100°C

Weighing Date: 12/21/16 Drying Time: 23ws

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
			Boat and			Mean Dry	
			Dry	Dry		Weight of	
Conc.	Rep No.	Weight of	1	Weight of		Larvae	
Conc.	INO.	Boat (g)	(g)	Larvae (g)	Larvae	(mg)	AvgInit.= Avg. Wt. Gain (mg)
	7	1.3210	1.2859	,0049	10	.49	
CONTROL	3	1,2785	1.2829	,००५५		,५५	0.44mg-0.13mg=0.31mg
	3	1.2770	1.2814	. ००५५		.44	
	9	1.2711	1.2751	,0040		, 40	
:	$\times 5$	1,2953	1,2993	,००५०		.40	
0.25g/L	χÇ	1.2652	1.2687	,0035		,35	O. Homg -0.13 mg = 0,27mg
J . –	X7	1,2972	(,2 18 (3)	.0841		.41	
	X 8	1,2892	1,2936	PP 00,		,44	
	x 9	1,2910	1,2922	,0012		,12	
7.5g/L ×	x (0	1.2968	1,2977	2009		,09	0.11me - 0.13 = 0.02
	1)×	1,2979	28PC,	.0009		۰۵۹	0.11mg - 0.13 mg = -0.00mg
	×12	1.9012	1.2886	.0014		,14	
	× 13	1,2952	1,2973	1500,		.21	
2.5g/L	XKI	1.2981	1,2993	50013		.12	0.(8,
	×15	1.2911	1.2931	,0020		.20	0.18mg-0.13mg = 0.05mg
	x 16	128681	1.2887	2019		.19	
	x 17	1.2929	1,2943	,2014		.14	
3.5g/L -	x 18	1,2988	1,3008	0C.00,		.20	042 - 50 12
	X 19	1.2942	1.2954	.0e()		,12	0.12mg - 0.18 mg = -0.01mg
	x 20	1.2896	1.2899	,0003		.03	
	x 21	1,2917	1,2975	₹ 000,	1	,06	0. Ohy - 0.13 mg - 0.43 mg - 0.
.5g/L	x 22	1,2952					3 5.13,345 - 2,1345
9,-	×23	1.2985					
,	x 24	1,2985					

Reviewed By: 3

Facility Test ID

Analytical Laboratories QC DECEMBER 2016

12/20/2016

Analyst

Will Reynolds

Species Pimephales promelas (fathead minnow)

Test Type Growth

IWC Conc.

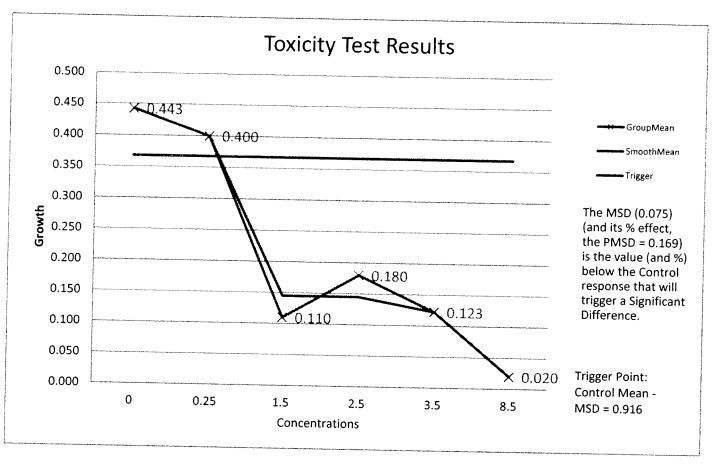
Input

Date

Replicate	<u>0</u>	<u>0.25</u>	<u>1.5</u>	<u>2.5</u>	<u>3.5</u>	<u>8.5</u>	
1	0.49	0.4	0.12	0.21	0.14	0.08	
2	0.44	0.35	0.09	0.12	0.2	0	
3	0.44	0.41	0.09	0.2	0.12	0	
4	0.4	0.44	0.14	0.19	0.03	Ō	

Mean	0.443	0.400	0.110	0.180	0.123	0.020	
Stdev	0.037	0.037	0.024	0.041	0.070	0.040	
Output							
Statistical Data	Conc.	Mean	Stdev	CV		Dunnett test	· · · · · · · · · · · · · · · · · · ·
	0	0.443	0.037	0.083			
	0.25	0.400	0.037	0.094		NS	
	1.5	0.110	0.024	0.223		Y	
	2.5	0.180	0.041	0.227		Y	
	3.5	0.123	0.070	0.575		Ý	
	8.5	0.020	0.040	2.000		Υ	
NOEC	LOEC		IC25	95% Confi	idence Interv	als	
0.25	1.5		0.50	0.39	0.63		

MSD	PMSD	
0.075	16.9%	


Table t-value

Calculated t-value

TST

Relative % Effect at IWC

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

Facility Test ID Date

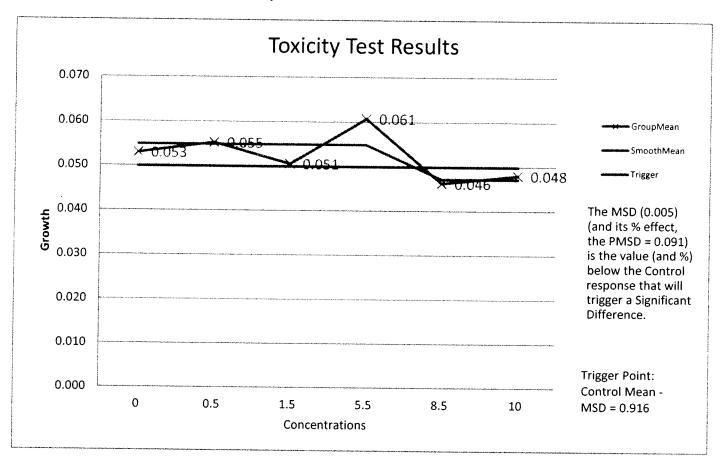
IWC Conc.

Analytical Laboratories QC DECEMBER 2016

12/20/2016

Analyst Will Reynolds

Species Selenastrum capricornutum (green algae)


Test Type Growth

Input

Replicate	<u>0</u>	<u>0.5</u>	<u>1.5</u>	<u>5.5</u>	<u>8.5</u>	<u>10</u>	
1	0.056	0.062	0.05	0.057	0.048	0.045	
2	0.051	0.054	0.05	0.061	0.046	0.051	
3	0.055	0.053	0.05	0.064	0.047	0.047	
4	0.05	0.052	0.052	0.061	0.044	0.049	

			, able t-va	140	iverative // i	Ellect at IVVC
тѕт	Calculated t	-value	Table t-va	lue	Relative % I	Effect at IWC
5.5	8.5		>10	N/A	N/A	
NOEC	LOEC		IC25	95% Conf	idence Interv	als
	10	0.048	0.003	0.054		Υ
	8.5	0.046	0.002	0.037		Y
	5.5	0.061	0.003	0.047		NS NS
	1.5	0.053	0.003	0.063		NS NS
	0 0.5	0.053 0.055	0.003 0.005	0.056 0.083		NO
Statistical Data	Conc.	Mean	Stdev	CV		Dunnett test
Output						
Stdev	0.003	0.005	0.001	0.003	0.002	0.003
Mean	0.053	0.055	0.051	0.061	0.046	0.048

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

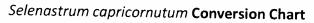
NOTICE

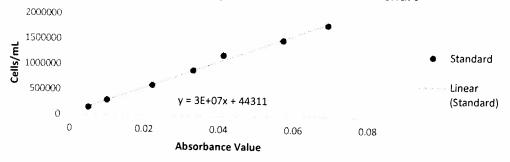
BENCH SHEET FOR S. capicornutum ALGAL QC GROWTH TEST

EPA TEST METHOD 1003.0

Lec 2016 ANALYSTUR FINAL REPORT REVIEW:

TEST MONTH/YEAR# Dec 2016 ANALYSTUR
TEST START DATE/TIME: \2/11/16, \200
TEST END DATE/TIME: \2/15/16, (600


Initial Algae Count (cells/ml.)


	miliai Aigae	Count (cens	mL)	
Random Sample #1	Random Sample #2	Random Sample #3	Random Sample #4	Initial Average
Absorbance Value: ••••••••••••••••••••••••••••••••••••	Absorbance Value: • • • • • • • • • • • • • • • • • • •		1/-1	Absorbance Value: 0)2 Cells/mL:

Final Algae Count (cells/mL)

BURNING THE CONTRACTOR OF THE CONTRACTOR	CONTRACTOR OF THE PARTY OF THE	The state of the s	Count (Cens	7/11/L)	
CONCENTRATION	Rep. 1	Rep. 2	Rep. 3	Rep. 4	Average
CONTROL	Absorbance Value: _OSL	Absorbance Value: , 051	Absorbance Value: 2055	Absorbance Value:, 050	Absorbance Value:053
0.5	Absorbance Value: • 063	Absorbance Value: ,054	Absorbance Value: , 053	Absorbance Value: _352	Absorbance Value: c55
1.5	Absorbance Value: , 050	Absorbance Value: , 050	Absorbance Value: oSo	Absorbance Value: , 552	Absorbance Value: , 6 51 Cells/mL: (S6
5.5	Absorbance Value: 057	Absorbance Value:,06	Absorbance Value: 064	Absorbance Value: o61	Absorbance Value; c 5% Cells/mL: 1,79
	Absorbance Value: , 이내용	Absorbance Value:,046	Absorbance Value: , 0억7	Absorbance Value: 044	Absorbance Value:,૯૫૮ Cells/mL: (્વર્
10	Absorbance Value: ,) 45	Absorbance Value: , 25 \	Absorbance Value:いけ7	Absorbance Value: , 049	Absorbance Value: 048 Cells/mL: 1.48

^{*}Absorbance values (AV) obtained from Spectronic 601 spectrophotometer are used to determine cells/mL based on a standardized linear relationship ($(3x10^{\circ}7)(AV) + 44311$).

BENCH SHEET FOR S. capicornutum ALGAL QC GROWTH TEST. EPA METHOD 1003.0

Test Month/Year Coll Analyst: wp/cp Final Report Review: 50

Test Start Date/Time: 12/11/16 1200

Test Stop Date/Time: 12/15/16, 1600

Daily pH and Temp.

CONCENTRATION	Day 0		Da	Day 1		Day 2		Day 3		Day 4	Comments
	pН	Temp	рН	Temp	pН	Temp	рН	Temp	рН	Temp	
Control	8.3	24.8	9.6	23.7	10.8	24.3	11.0	24.0	10.8	1	
0.50 g/L	8.2	24.5	99	23.8	10.7	24.2	10.9	24.1	11.0	24.9	
1.5 g/L	8,3	24.2	10.0	240	10.7	24.3	10.9	23.9	10.9	25.0	
5.5 g/L	8.3	23.8	9.8	24.2	10,3	24.3	10.5	23,9	10-4	24.8	
8.5 g/L	4.3	33.5	9.7	24.4	10.5	24.6	10.0	23,8	9.9	24.8	
10 g/L	6 3	23.4	9.6	23.4	10.0	24,3	10.1	24.0	10,1	25.8	

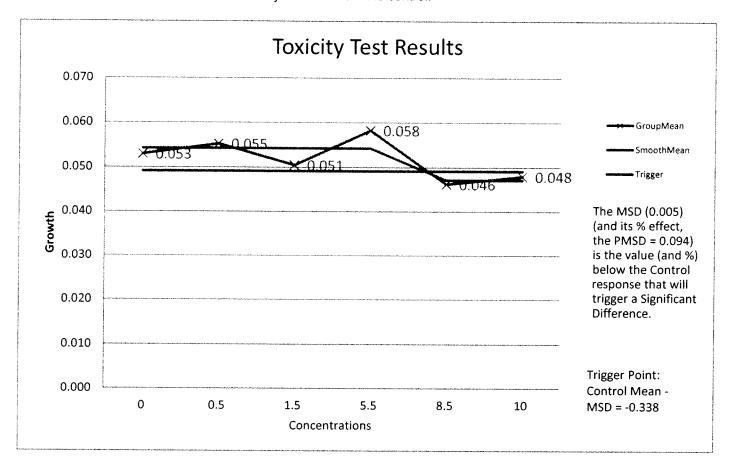
Facility Test ID Date

Analytical Laboratories QC DECEMBER 2016

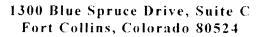
1/3/2017

Analyst Will Reynolds

Selenastrum capricornutum (green algae) **Species**


Test Type Growth

IWC Conc.


			Concer	trations		
Replicate	<u>0</u>	<u>0.5</u>	<u>1.5</u>	<u>5.5</u>	<u>8.5</u>	<u>10</u>
1	0.056	0.062	0.05	0.057	0.048	0.045
2	0.051	0.054	0.05	0.061	0.046	0.051
3	0.055	0.053	0.05	0.054	0.047	0.047
4	0.05	0.052	0.052	0.061	0.044	0.049

Calculated t	-value	Table t-va	lue	Relative %	Effect at IWC
>10		>10	N/A	N/A	
LOEC		IC25	95% Conf	idence Interv	als
10	0.048	0.003	0.054		NS
8.5	0.046	0.002	0.037		Υ
5.5	0.058	0.003	0.058		NS
1.5	0.051	0.001			NS
					NS
					Dunnett test
Como		0.1			
0.003	0.005	0.001	0.003	0.002	0.003
					0.048
	5.5 8.5 10 LOEC >10	O.003 O.005 Conc. Mean O 0.053 O.5 O.055 1.5 O.051 5.5 O.058 8.5 O.046 10 O.048 LOEC	Conc. Mean Stdev 0 0.053 0.003 0.5 0.055 0.005 1.5 0.051 0.001 5.5 0.058 0.003 8.5 0.046 0.002 10 0.048 0.003 LOEC IC25 >10	Conc. Mean Stdev CV 0 0.053 0.003 0.056 0.5 0.055 0.005 0.083 1.5 0.051 0.001 0.020 5.5 0.058 0.003 0.058 8.5 0.046 0.002 0.037 10 0.048 0.003 0.054 LOEC IC25 95% Conf >10 N/A	Conc. Mean Stdev CV 0 0.053 0.003 0.056 0.5 0.055 0.005 0.083 1.5 0.051 0.001 0.020 5.5 0.058 0.003 0.058 8.5 0.046 0.002 0.037 10 0.048 0.003 0.054 LOEC IC25 95% Confidence Interventable Properties >10 N/A N/A

Note - For statistical tests, "NS" indicates that the concentration is not statistically different from the control, while "Y" indicates that the concentration is statistically different from the control.

NOTICE

Toll Free: 800/331-5916 Tel:970/484-5091 Fax:970/484-2514

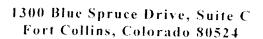
YTC TOTAL SOLIDS MEASUREMENT

(Method from EPA/505/8-89-002a)

YTC Process Date: 12/21/2016: Best if used by 3/31/2017

Average Total Solids: 1710 mg/L

Ingredient Lot Numbers


Pines International® Wheat Grass: COCDW12S50; Zeigler Finfish Starter #1 (Lot 10/19/2016); Fleischmanns Yeast: G-3

Analyzed Metals	Report Limits	Results (mg/L)		
Aluminum	0.03	0.08		
Arsenic	0.001	U		
Cadmium	0.001	l l		
Chromium	0.005	l i		
Copper	0.05	0.033		
Iron	0.02	0.24		
Lead	0.001	U		
Mercury	0.001	U		
Nickel	0.005	U		
Silver	0.001	Į i		
Zine	0.01	0.14		

EPA Required Toxic N		Analyses*
Compounds	Report Limits	Results
		(ug/L)
Aldrin	0.5	U
alpha-BHC	0.5	U
beta-BHC	0.5	U
delta-BHC	0.5	U
gamma-BHC (Lindane)	0.5	U
alpha-Chlordane	0.5	U
gamma-Chlordane	0.5	U
4,4' - DDD	0.5	U
4.4' – DDE	0.5	Į!
4,4' -DDT	0.5	U
Dieldrin	0.5	t
Endosulfan I	0.5	L.
Endosulfan II	0.5	C.
Endosulfan sulfate	0.5	U
Endrin	0.5	Į)
Endrin aldehyde	0.5	U
Endrin ketone	0.5	U
Heptachlor	0.8	U
Heptachlor epoxide	0.5	U
Methozychlor	0.5	t.
Chlordane (technical)	5.0	Ü
Toxaphene	25	l.
Aroclor-1016	5.0	U
Aroclor-1221	5.0	T:
Aroclor-1232	5.0	i.
Aroclor-1242	5.0	- i
Aroclor-1248	5.0	- ŭ
Aroclor-1254	5.0	Ţ.
Aroclor-1260	5.0	
Aroclor-1262	5.0	i i
Aroclor-1268	5.0	U U

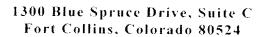
U – Indicates compound was analyzed for but not detected.

^{*}Testing performed by Energy Labs, Billings, Montana

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

Algae Preparation History

DATE	: 12 27 2016	
SPECIES	: Raphidocelis subcapitata*	
INOCULATION DATE	12/13/2016	
HARVEST DATE:	12/19/2016	
CONCENTRATION DATE:	12/21/2016	
CELL COUNT (/ml):	3.0 x 10 ⁷ cells/ml	
Comments: * For ** All	merly known as <i>Psuedokirschneriella subcapitata</i> and concentrated algae diluted to proper cell count with re	d Selenastrum capricornutum econstituted moderately hard DI water.


Ceriodaphnia dubia Stock Culture Log

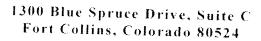
Month/Year: December/2016	
---------------------------	--

Start Date 3/3	1	End Date:		Board#:	(
i2 /2 : 0		2	3	4	5	6	7				
12/21 0	\leq	~/	/		\ \tag{\tau}	V	+	8	9	10	Time
17(2)21	\leftarrow	<u> </u>	~	/	V	1	<u> </u>		~	~	05130
	\leftarrow	V,	V	V	~	V	V .		1		1500
2/243 4	4	\checkmark	JY 1/2			./			V	V	1336
7/264 1/	11	15	2/4	1/2	1/5	1/11	1 11				1400
A14 2 716		10	3/15	2/10	2/6	2/11	1/4	174	/4	1/4	1235
7/26 /	3	114	1	/	3/12	\$1)	47	2/(1	2/7	2/7	1130
2/247/4/13 vival > 80%:	<u> </u>	\checkmark	4/15	3/9		2/00	3/10	<u> </u>	3/13	√	1215
4	yes,	/no		A	verage offspr	.3/ Y I		5/11	V	3/17	1230

Start Date:	5		The tage one	hring ber ten	nale > 20:		yes/no	13/1	11220
Trans. 1	End Date:	Board#:)						
12/210		3 4	5	6	7	8			
126/21	- 		V		1		9	10	Time
12/23 2	+ < + >		·/	1/				V	C93S
12/243 V	1.		_ ~	1/	<u> </u>		~	~	1505
12/264 1/3	1, 1				>	<u>/</u>	~	V	1135
10,000 200	114 1/4	/3 /	1/2	1/2	1/2	V 1	<u> </u>	✓	1405
12/00/	2/6 2/1	2 2/9 2	1/2 -	2/6 2	<u>//3</u>	V3	1/1	1/3	1240
175 V			- 1°		M	<u> </u>	2/12	2/13	1135
3/14 Survival > 80%:	13/11/3/	15 3/14	3/17	¥/ 3	4	3/16		V	220
	yes/no	Av	erage offspri	ng per female	12	V	3/9		332
Start Date:	_		,	a Per remaie	· > 2U:	y	es/no		₹ 5°

					Average of	fspring per	emale > 20:		13/1	1711	71532 1
Start Date: Trans.	1	End Date:		Board#:	>				yes/no		
12/210	\ <u>\</u>	2	3	4	5	6	7	8	Ta	10	
19/92	✓′	>				4	V	V	1	10	Time G40
12/24 3	~	V	v	V	v	V	1	1	~	~	1510
12/264	1/8	1/4	1/2	V	V	V	V	V		<u> </u>	1140
12/275	✓ .	2/12	2/11	2/11	2/9	7/3	7)	1/5	1/4	110	1942
12/29, 3	(15)	3/11		3/14		2/1	2/8	2/6	3/12	2/12	1,40
Survival > 80%:	ye	s/no	3/12	$\overline{\mathcal{A}}$	'3/(0	3/14	2/15	3115	3/0	3/18/1	225
				.,	verage offsp	ing per fem	ale > 20:)	es/no	3/18	140

Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514


Algae Preparation History

DATE:	12/5/2016
SPECIES:	Raphidocelis subcapitata*
INOCULATION DATE:	11/16/2016
HARVEST DATE:	11/21/2016
CONCENTRATION DATE:	11/23/2016
CELL COUNT (/ml);	3.0×10^{7} cells/ml

Comments:

- * Formerly known as Psuedokirschneriella subcapitata and Selenastrum capricornutum
- ** All concentrated algae diluted to proper cell count with reconstituted moderately hard DI water.

Supervisor

Toll Free: 800/331-5916 Tel:970/484-5091 Fax:970/484-2514

YTC TOTAL SOLIDS MEASUREMENT

(Method from EPA/505/8-89-002a)

YTC Process Date:

11/30/2016: Best if used by 2/28/2017

Average Total Solids:

1750 mg/1

Ingredient Lot Numbers

Pines International Wheat Grass: COCDW12S50: Zeigler Finfish Starter #1 (Lot 06/05/2016); Fleischmanns Yeast: G-3

EPA Required Toxic Metals and Pesticide Analyses*

Analyzed Metals	Report Limits	Results (mg/L)
Aluminum	0.03	0.09
Arsenic	0.001	1
Cadmium	0.001	T I
Chromium	0.005	
Copper	0.005	0.046
Iron	0.02	0.26
Lead	0.001	1
Mercury	0.001	
Nickel	0.005	1
Silver	0.001	1:
Zinc	0.01	0.15

Compounds	Report Limits	Results	
Aldrin	0,5	(ug/L)	
alpha-BHC	0.5	L	
beta-BHC	0.5	I.	
delta-BHC	0.5	L'	
gamma-BHC (Lindane)	0.5	<u> </u>	
alpha-Chlordane	0.5	U	
gamma-Chlordane	0.5	- C	
4,4' - DDD	0.5		
4.4" - DDE	0.5		
4,4' -DDT	0.5		
Dieldrin	0.5	f.	
Endosulfan I	0.5	<u>\</u>	
Endosulfan II	0.5	1	
Endosulfan sulfate	0.5		
Endrin	0.5		
Endrin aldehyde	0.5	L)	
Endrin ketone	0.5		
Heptachlor	0.8	<u> </u>	
Heptachlor epoxide	0.5	U	
Methozychlor	0.5	II.	
Chlordane (technical)	5.0	l:	
Foxaphene	25	t t	
Aroclor-1016	5.0	<u>U</u>	
Aroclor-1221	5.0	<u>U</u>	
Aroclor-1232	5.0	<u> </u>	
Aroclor-1242	5.0	l.	
Aroclor-1248	5.0		
Aroclor-1254	5.0		
troclor-1260	5.0	<u> </u>	
vroclor-1262	5.0		
roclor-1268	5.0	<u> </u>	

U - Indicates compound was analyzed for but not detected.

^{*}Testing performed by Energy Labs, Billings, Montana